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Abstract

Ultrasonic data analysis as a method of early-stage machine fault detection has been successfully utilized in the Predictive Maintenance (PdM) 

industry for over 25 years. The challenge with this type of machine health monitoring is the collected data’s sensitivity to the changes in machine 

operational condition, such as load, speed, and/or pressure. Typically, any alarm or fault criteria threshold based on ultrasonic data would need to be 

sufficiently elevated in order to accommodate the machine’s variable operational conditions, or else the monitoring system would generate excessive 

false alarms due to, for example, a high load condition. However, a sufficiently high alarm level results in a reduced response accuracy in the ultrasonic 

monitoring system to specific machine fault conditions. A proposed solution to the high sensitivity of the ultrasonic monitoring system is an integrated 

solution with a predictive pattern recognition system that would predict the ultrasonic data level based on machine operational conditions. Based 

on the ultrasonic data analysis, the pattern recognition algorithm is able to create dynamic or variable alarm conditions to improve the accuracy of 

determining machine health and/or the presence of mechanical faults. 

INTRODUCTION

Machine health monitoring and fault detection techniques have 

typically been accomplished via of traditional monitoring, such as 

vibration analysis, thermography, or oil analysis. But the Predictive 

Maintenance (PdM) industry is shifting towards incorporating ad-

vanced analysis technologies such as Artificial Intelligence (AI) and 

Machine Learning (ML) algorithms due to the potential advantages 

of these technologies over the challenges of traditional machine 

health monitoring. As Hosanagar explains: 

AI involves enabling computers to do all the things that typi-

cally require human intelligence, including reasoning, under-

standing language, navigating the visual world, and manipu-

lating objects. Machine learning is a subfield of AI that gives 

machines the ability to learn (progressively improve their per-

formance on a specific task) from experience – the aptitude 

that underlies all other aspects of intelligence. As modern 

algorithms have incorporated more AI and machine learning, 

their capabilities and their footprint have expanded.1

Traditional predictive maintenance (PdM) techniques for machine 

fault diagnosis have typically comprised of one or more of the 

following: (1) Manual interpretation of traditional monitoring data 

using historical data charts and/or FFT analysis; (2) Incorporating 

advanced machine monitoring data collection techniques, such 

as ultrasonic acoustic sensors, motor current signature analysis 

(MCSA), infrared thermography, and/or online oil debris detection; 

1 Kartik Hosanagar, A Human’s Guide to Machine Intelligence: How Algorithms are Shaping Our Lives and How We Can Stay in Control, (New York: Penguin  
  Random House LLC, 2019), 6. 
2 Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, (Cambridge, MA: MIT Press, 2016). 

and (3) custom designed software for identifying specific machine 

defects.  The PdM industry as a whole has been slow to incor-

porate advanced technologies to automate some of the manual 

data analysis required to determine machine fault issues, but as 

ML and AI systems have advanced, the PdM industry has begun 

to utilize some of these systems in the areas of machine fault 

diagnosis. 

For example, vibration monitoring typically requires an experienced 

analyst to interpret the data and make informed conclusions about 

the machine’s health and/or the presence of specific faults. With 

the vast amounts of data being generated by typical machine 

monitoring systems, this type of fault detection analysis can be 

extremely time consuming, and can result in a specific fault being 

missed due to data overburden strain. A system that can scruti-

nize the vast amount of machine operational data for anomalous 

behavior will be advantageous to generating prompt and accu-

rate machine fault identifications.  Per Goodfellow, Bengio, and 

Courville, “Machine learning enables us to tackle tasks that are 

too difficult to solve with fixed programs written and designed by 

human beings.”2 

While predictive pattern recognition can routinely detect anoma-

lous behavior from the collection of condition monitoring sensors 

associated with an asset, due to the nature of the measurements 

typically available from traditional monitoring it is a challenge to 
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identify specific failure mechanisms before any damage has started 

to occur. For example, by the time a vibration or temperature 

monitor detects anomalous behavior, the damage to the machine 

asset may be beyond a simple repair. The ideal situation is to have 

the monitoring system identify anomalous machine behavior before 

the damage to the asset is severe. By using ultrasonic detection 

to monitor the machine’s frictional behavior, the system is able 

to detect the anomalous behavior at a very early stage, and by 

applying that data to an AI/ML system, such as predictive pattern 

recognition, the integrated solution can predict anomalous behavior 

at a higher level of accuracy than traditional manual data analysis 

techniques.

METHODOLOGY

PREDICTIVE PATTERN RECOGNITION

Predictive pattern recognition is a real-time, continuous, on-line 

monitoring system that utilizes existing data signals available 

through installed DCS systems, historians, and other monitoring 

systems for anomaly detection.  While predictive pattern recognition 

has features common to other advanced pattern recognition appli-

cations, there are some unique capabilities included in predictive 

pattern recognition that differentiate this application from other 

technologies. 

The underlying algorithm embodied in predictive pattern recogni-

tion is the System State Analyzer (SSA).  As Mott, Radtke, and King 

state, “The SSA is a software-based pattern-recognition system that 

uses previously established relationships of signals from the plant 

data acquisition system to compare with relationships of current 

signals”3. Just as a human is able to recognize that the behavior of 

a system “looks right” from past experience, the SSA can assess a 

system based on patterns it discerns from numeric data. The SSA 

predictive engine is capable of interpreting data in ways that are 

currently impractical by any other means; it functions by learn-

ing and discerning data patterns associated with normal system 

operation and then comparing the learned reference characteristics 

with subsequent monitored system behavior. The SSA performs its 

analysis by:

• Learning the patterns associated with normal system 
   operation from archived numeric data values to establish a 
   reference for the model

3 J. E. Mott, W.H. Radtke and R.W.King, EBR-II System Surveillance Using Pattern-Recognition Software, CONF-880748-
 -6, (Idaho Falls, Idaho: EBR-II Division, Argonne National Labratory, July 31-August 3, 1988).

• Monitoring the numeric data from continued process 
   operation
• Identifying discrepancies between the learned patterns and 
   the monitored data
• Presenting results graphically

• Alarming detected anomalies

When the SSA analyzes a system, a value is predicted for every 

signal in the system. Comparison of the monitored signal value with 

the SSA’s predicted value can provide a fault detection or valida-

tion capability for each signal in the system – the SSA can detect 

or validate these changes even if a particular signal is drifting or 

has failed altogether.  If a signal is missing, the SSA provides an 

accurate replacement for the missing value in a process known as 

“synthetic variable generation”; even when many signal values are 

missing or incorrect in the monitored data, the SSA’s pattern recog-

nition algorithm will continue to provide accurate predictions. 

The SSA performs analysis by “learning” the characteristics of nor-

mal system operation and using those characteristics to evaluate 

the current status of the overall system, its individual components, 

and each input signal. The “learning” process involves loading sets 

of data into a reference library (i.e., system states) that represent 

good operating practices and well-calibrated instrumentation; sub-

sequent monitored data sets are then compared with those in the 

reference library for similarity. A group of the most similar reference 

states that bound the monitored state are stored in the learned 

domain, completing the “learning” process. The learned domain is 

then manipulated to develop a mathematical representation of the 

system given the current operating conditions. 

When this mathematical representation is combined with the 

monitored state, a prediction for each signal is calculated. The 

predicted state is then compared to the monitored state to evaluate 

overall system operation. Additionally, the value for each signal in 

the monitored state is compared to its corresponding predicted 

value to identify signal failure, calibration drift, and/or component 

performance changes and degradation. Figure 1 shows an example 

of predicted dynamic alarming’s advantages versus a fixed alarm 

threshold criteria.
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ULTRASONIC CONDITION MONITORING

Utilizing ultrasonic condition monitoring provides superior accuracy 

in the early detection of machine damage and faults. Per Shaw:

It has been determined, through many years of field and 

laboratory research, that base friction and friction events, 

generate high frequency (ultrasonic) sound emissions that can 

travel through the machine’s structure and be detected by a 

suitably designed sensory apparatus.”4

The ultrasonic detection system typically employs distributed data 

acquisition units and sensors that monitor high frequency sound 

generated by friction that naturally occurs between the moving 

parts of a machine.  This technique provides a higher degree of 

dynamic resolution and more failure lead-time than traditional 

diagnostic methods. As Board adds:

It is superior to vibration analysis for detecting and quanti-

fying discrepant conditions that generate friction and shock. 

This includes not only localized fatigue damage to bearings 

and gears, but also includes lubrication problems, abnormal 

dynamic loading, and foreign object damage.”5

Ultrasonic acoustic emission is defined as the class of phenomena 

whereby transient elastic waves are generated by the rapid release 

of energy from a localized source or sources within a material; 

an example would be the progression of a crack in a solid, due to 

4 William T. Shaw, PhD, CISSP, Continous stress wave monitoring for failure progression analysis, (Fort Lauderdale, Florida: SWANTECH, LLC, 2006).
5 David B. Board, Stress Wave Analysis of Turbine Engine Faults, (Fort Lauderdale, Florida: SWANTECH, LLC, 2004).

inter-granular plastic deformation.  Ultrasonic acoustic emissions 

are also continuously generated from contact stresses between 

two surfaces with relative motion.  An important distinction of ultra-

sonic acoustic emissions is that they typically have higher energy 

content, and will propagate further through solid structures as 

well as across material interfaces, such as bolted flanges, mating 

gear teeth, and antifriction bearing rolling elements/races. This 

structure-borne ultrasound is caused by friction and shock events 

between the moving parts of a machine. An externally mounted 

sensor on the machine’s housing detects the ultrasonic acoustic 

emissions transmitted through the machine’s structure. As the 

high frequency emissions propagate into the sensor, a piezoelectric 

crystal resonates at a central ultrasonic frequency and is converted 

into an electrical signal, which is then amplified, band pass filtered, 

and demodulated to remove unwanted low frequency sound and 

vibration energy. The output of the signal conditioner represents a 

time history of individual shock and friction events in the machine 

based on this ultrasonic data. 

PROPOSED DESIGN FOR PREDICTIVE PATTERN RECOGNI-
TION / ULTRASONIC INTEGRATED SOLUTION

The typical alarm functionality of a machine monitoring system is 

to establish a list of major parameter values, with upper and lower 

limits as appropriate, for each mode of operation or each state of 

Figure 1: Predictive Pattern Recognition Dynamic Alarming vs. Traditional Fixed Alarm Limit
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the machine. These parameters are examined on a regular basis 

and checked against their limits in a process referred to as a polling 

technique. The problem with this solution is that it is not very accu-

rate in a dynamic sense. Because the system is closed and many of 

the parameters are coupled or correlated with each other, if some 

parameters change, then other parameters also change. Moreover, 

the movement of some variables is often a precursor to component 

or system failure. 

An example would be the case of a pump motor beginning to draw 

too much power; if the pump power increase is not correlated with 

a flow increase or a coolant temperature change and corresponding 

density change, then it may indicate that the shaft is beginning to 

bind because of foreign material intrusion or that the bearings are 

beginning to fail. In any case, the vast number of correlations are 

difficult to anticipate and recognize on a timely basis using a polling 

technique.

Alternatively, by utilizing a predictive pattern recognition system 

based on the learning process of the System State Analyzer (SSA), 

the methodology is able to simultaneously validate hundreds of 

signal values and replace many failed signal values with estimates 

that depend only on a dynamic estimate of the state of the system, 

with both signal validation and replacement occurring in near-real-

time.

To improve machine fault detection and diagnosis, the proposed 

solution utilizes ultrasonic signals as a data source basis for the 

predictive pattern recognition system. As shown in Figure 2, the 

typical plant monitoring layout is utilized, with the addition of 

a connection between the ultrasonic monitoring hardware and 

the predictive pattern recognition system. Therefore, due to the 

familiarity of existing condition monitoring applications that utilize 

this type of on-line data collection, the proposed integration is 

not a complicated endeavor. The integration of ultrasonic and 

predictive pattern recognition involves specific data transfers via 

industry standard protocols such as Modbus TCP/IP and OPC – the 

predictive pattern recognition database can be easily configured to 

accept the ultrasonic data as a signal source for the SSA engine 

from these methods. 

Data collected using ultrasonic techniques benefits from the 

advantage of utilizing a proven system that allows the system 

to predict the machine fault issue at a much earlier stage in the 

fault progression than  traditional monitoring techniques such as 

Figure 2: Overall System Diagram Implementing Predictive Pattern Recognition with Ultrasonic Data Collection
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vibration or infrared monitoring. By measuring shock and friction 

events, the ultrasonic technique is able to detect wear and dam-

age at the earliest stages, and track the progression of a defect 

throughout the failure process. This tracking is possible because as 

the damage progresses, the energy content of friction and shock 

events increases.

Experienced reliability engineers will recognize Figure 3 as a styl-

ized version of the typical P-F curve.  The unit is in good condition 

until, at some point in time, damage begins and its condition starts 

to degrade.  Point P on the curve identifies where an observation or 

dedicated condition monitoring measurement would first recog-

nize the fact that the condition has started to degrade.  This point 

represents the first time that the Potential for failure not only exists, 

but it can be objectively acknowledged to exist.  Point F is the point 

where the Failure occurs.

When examined with this graph, the advantages of monitoring 
ultrasonic emissions over more traditional condition monitoring 
technologies appear:

• Point P for ultrasound is exactly the point where damage, 
manifested by impact pulses, begins, and

• A PROActive Point P exists, prior to actual damage occur-
ring, where ultrasound can identify that conditions are right 
for damage to occur even though it hasn’t actually started. 

Traditional condition monitoring methods and technologies are only 

effective after the initial damage has occurred and progressed to 

the point where it can be recognized over its routine measurement 

background levels.   They merely identify the fact that significant 

damage has already occurred and progressed to their respective 

Point P’s, and without intervention, failure is inevitable.  Additionally, 

it is expected that the predictive pattern recognition/ultrasonic inte-

grated system will predict normal ultrasonic levels as they vary with 

typical operation, allowing a dynamic alarm band that could provide 

earlier warning than a fixed threshold alarm or criteria.

Thus, by combining the advantages of a “rules-based” algorithm, 

such as predictive pattern recognition, with the early-warning bene-

fit of ultrasonic monitoring, the combined system is proposed to be 

a very effective technique, producing effective and reliable results 

in machine fault diagnosis and the PdM industry as a whole.
 

EXPERIMENTAL RESULTS AND ANALYSIS

WIND TURBINE DATASET

Wind turbine monitoring has proven to be a challenging environ-

ment for traditional data collection to produce accurate fault detec-

tion due to factors inherent in wind turbine design and operation, 

including: (1) variable speed and power conditions, (2) high levels 

of integral structural vibration, (3) low speed conditions of the main 

shaft bearing, (4) extreme environmental conditions, and (5) high 

stress levels applied to drivetrain mechanical components during 

shutdown operations. These factors have created demanding 

operational conditions for traditional monitoring technologies and 

have resulted in the industry’s momentum shifting towards using 

cutting-edge condition monitoring techniques for wind turbines. 

The numerous advantages of ultrasonic technology can produce 

a positive outcome when applied to wind turbine monitoring. 

These advantages include: (1) shaft rotation speed does not affect 

ultrasonic signal production, (2) inherent wind turbine vibration is 

filtered out by the sensors, (3) the frictional detection capability of 

ultrasonic is useful in determining oil effectiveness during extreme 

Figure 3: Relative Placement of Monitoring Technologies along the P-F Curve
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temperature fluctuations, and (4) the short duration, high level 

mechanical forces applied to wind turbines can be effectively moni-

tored and time-stamped for future mitigation. 

In this analysis, a wind turbine’s dataset of ultrasonic values is 

applied to the predictive pattern recognition system to determine if 

the combination of the two technologies is an effective system for 

determining anomalous behavior. The investigation will determine 

the effectiveness of the predictive pattern recognition system to 

identify anomalous conditions when compared to using the ultra-

sonic technology unassisted.

ASSESSMENT OF FAULT DETECTION CRITERIA

The primary advantage of the predictive pattern recognition system, 

as applied to wind turbine monitoring, is its capability to determine 

predicted values based on power output conditions. This allows 

the predictive pattern recognition system have a variable alarm 

structure, which is constructed on the difference between actu-

al and predicted values. If the difference, or residual, exceeds a 

defined value, the system can trigger an alarm output. In contrast, 

the ultrasonic system has fixed alarm thresholds, and in order to 

accommodate the high values of wind turbine power output, the 

alarm levels need to be established at a sufficiently high level to 

minimize the occurrence of false triggers. 

RESULTS

The wind turbine data set is analyzed by two methodologies: (1) 

ultrasonic only data and (2) predictive pattern recognition applied 

to the ultrasonic data. This analysis contrasts the ability of the 

predictive pattern recognition system to determine a wind turbine’s 

overall health condition via the predicted System State Analyzer 

(SSA) versus the ultrasonic data collected via the ultrasonic signal 

generation functionality.

Three wind turbines are selected for data analysis: T1 has no 

mechanical issues; T2 has a minor level of unspecified mechanical 

issues in the generator; and T3 has a major level of unspecified 

mechanical issues in the gearbox. Since this analysis is focusing 

on determining the accuracy of the overall health indicator between 

the two solutions, i.e. ultrasonic alone versus predictive pattern 

recognition of the data, the specific mechanical issues do not need 

to be identified. 

The results in Table 1 indicate that the ultrasonic data shows zero 

criteria excursions for the wind turbine with no issues, but that only 

1% of samples exceeded the criteria for the turbine with issues 

present. In contrast, the predictive pattern recognition system had a 

very low excursion rate for the good wind turbine, but had a much 

higher level of samples that exceeded the criteria for the wind tur-

bine with issues. Most systems have some level of alarm filtering, 

and a high level of sample excursions will permit a stronger pres-

ence of an issue within the alarming system. It is therefore shown 

that the predictive pattern recognition/ultrasonic integrated solution 

is able to generate a more accurate response to the wind turbine’s 

mechanical condition. 

The results in Table 2 indicate that for the wind turbine with no 

issues, T1, both the ultrasonic only system and predictive pattern 

recognition system show a very low number of samples that ex-

ceed each system’s criteria. But when contrasting the wind turbine 

with gearbox issues, T3, the ultrasonic system has a 54% criteria 

excursion rate, while the predictive pattern recognition system 

Table 1: Generator Data from T1 and T2: Comparison of Ultrasonic vs Predictive Pattern Recognition/Ultrasonic Data 
Analysis
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has a 100% criteria excursion rate. This analysis indicates that the 

predictive pattern recognition system is more effective at identifying 

wind turbines will issues present.

Figure 4 is a sample of wind turbine data from the Generator Drive-

End sensor that indicates the difference between actual versus 

predicated ultrasonic data. The power output of the wind turbine 

shows how the ultrasonic data is influenced by the increased load, 

and thus friction, being applied to the wind turbine. The predictive 

pattern recognition system indicates that it can track or predict the 

increase in ultrasonic level with good accuracy as the wind turbine 

power output increases. 

Table 2: Gearbox Data from T1 and T3: Comparison of Ultrasonic vs Predictive Pattern Recognition/Ultrasonic Data 
Analysis

Figure 4: Comparison of Predictive Pattern Recognition Data – Actual vs PredictedAnalysis
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CONCLUSION AND FUTURE WORK

The analysis performed in this paper indicates that the application 

of ultrasonic data into the predictive pattern recognition system 

improves the sensitivity of signaling the presence of mechanical 

defects within the mechanical components of a wind turbine. This 

result can be translated into the monitoring of other mechanical 

systems where the speed, load, or power output varies during the 

machine’s operation. Due to varying degrees of machine operation, 

it can be difficult to accurately define a machine’s overall health 

condition based on the ultrasonic data analyzed on its own because 

of the effect of increased frictional energy on the ultrasonic signal. 

But by applying the predictive pattern recognition predicted value 

structure to the ultrasonic data, the variable machine operation 

can be minimized and the quantity of accurate criteria alarms is 

increased. 

The next step in this evaluation is to apply advanced ultrasonic 

data structures, such as energy distribution skewness and machine 

defect frequency analysis, to the predicted value data analysis in 

predictive pattern recognition. Further data points can allow the 

system to pinpoint the presence of specific mechanical defects, 

such as poor oil lubrication and bearing defects, within the predic-

tive pattern recognition system.
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