SaskPower

On-Line Performance at SaskPower Presented by: Scott McLeod January 13-16, 2009 Clearwater, Florida

- 1. Introduction to SaskPower & On-Line Performance
- 2. Project description
- 3. Implementation and technology
- 4. Benefit Assessment
- 5. Future thoughts

1. Introduction to SaskPower & On-Line Performance Where is Saskatchewan?

1. Introduction to SaskPower & On-Line Performance SaskPower's Assets

Generation (net capacity)

Hydroelectric

- Athabasca Hydroelectric System 23 MW
 - · Wellington (5 MW)
 - · Waterloo (8 MW)
 - . Charlot River (10 MW)
- Island Falls Hydroelectric Station 102 MW
- 4 E. B. Campbell Hydroelectric Station 288 MW
- 6 Nipawin Hydroelectric Station 255 MW
- Coteau Creek Hydroelectric Station 186 MW

Natural Gas

- 6 Meadow Lake Power Station 44 MW
- 1 Landis Power Station 79 MW
- Queen Elizabeth Power Station 385 MW
- Success Power Station 30 MW

Wind

- Centennial Wind Power Facility 150 MW
- Cypress Wind Power Facility 11 MW

Coal

- Poplar River Power Station 572 MW
- Boundary Dam Power Station 813 MW
- Shand Power Station 276 MW

Independent Power Producer

- O Meridian Cogeneration Station 210 MW
- Cory Cogeneration Station 228 MW
- SunBridge Wind Power Project 11 MW
- INRGreen Kerrobert Heat Recovery Project 5 MW

Transmission

SaskPo	wer capa	city:
Hydro	854 MW	27%
Gas	538 MW	17%
Wind	161 MW	5%
Coal	1661 MW	51%
SP Total	3214 MW	100%
IPP Capac	ity:	
Gas	438 MW	96%
Wind	11 MW	3%
Heat Rec	5 MW	1%
IPP Total:	454 MW	100%
TOTAL	3668 MW	
Population	1,040,000	(2008)
4	SaskPc	ower

1. Introduction to SaskPower & On-Line Performance About SaskPower

Company Profile:

- Crown Utility owned by province of Saskatchewan
- Generation & Transmission company
- Sales executed by separate company (NorthPoint Energy)
- ~\$4 billion in assets

Short-term Growth Strategy:

- Gas, gas and more gas (higher than expected load growth)
- Combination of SaskPower (~300 MW) & IPP investment (200-400 MW) by 2010

Long-term Growth Strategy:

- Everything is on the table
- Clean-coal, Combined Cycle, Polygeneration, Nuclear

1. Introduction to SaskPower & On-Line Performance Load Growth & Unit Retirements

1. Introduction to SaskPower & On-Line Performance Production Performance Group

W.P. (Perry) Hill Supervisor 566-3339 <u>phill@saskpower.com</u> Flant Contact: <u>Shand</u>

D.E. (Dan) Hemingway Performance Specialist II 566-2868 <u>dhemingway@saskpower.com</u> Plant Contact: (reassigned to the SPOAD project)

D. (David) Mah Performance Specialist II 566-3338 <u>dmah@saskpower.com</u> Plant Contact: None (Full-time results support)

D.J. (Dwayne) Selensky Chemical Performance Specialist II 566-2282 <u>dselensky@saskpower.com</u> Plant Contact: All (Chemistry issues)

S.W. (Scott) McLeod Performance Specialist II 566-2243 smcleod@saskpower.com Plant Contact: Poplar River, Queen Elizabeth

A. (Alyssa) McLaughlin Performance Engineer I 566-3171 amclaughlin@saskpower.com Plant Contact: Boundary Dam B & C Plant

J. (Jason) Wasilieff Performance Engineer I 566-3589 jwasilieff@saskpower.com Plant Contact: Boundary Dam A Plant

A. (Arlen) Reed Performance Specialist I 566-2998 <u>areed@saskpower.com</u> Plant Contact: All (Chemistry issues)

•Remote Monitoring

- •Field testing
- •Statistical Reporting
- •Site meetings with plants
- •Monitoring & Statistical tools development & maintenance

1. Introduction to SaskPower & On-Line Performance Current Monitoring tools

On-Line Tools:

• Data historian

• Engineering calcs in Bailey

Off-Line Tools:

• Engineering calcs MPR

- Anomaly detection **PowerPlant MD Prokopetz**
- Modeling **PEPSE**
- Team room
- Lotus. Notes 7
- Operator Logs

1. Introduction to SaskPower & On-Line Performance Monitoring Program Assessment

Program reviewed in 2005:

- Slow & time consuming (off-line spreadsheets, field testing)
- Bailey calcs not maintained, not validated, not trusted.
- Missing data/instruments
- Spend too much time on data manipulation, not enough on assessment & follow-up
- Often perform post-mortems, and not enough preventative assessments.
- Too many tools information scattered.
- No standardized processes.

Not doing things as smart as we could be

2. Project Description Performance Monitoring Goals:

- Efficient unit operation & high availability *
- Evaluation of equipment & cycle condition *
- Performance Optimization * (open loop)
- Performance Problem solving *
- Maintenance planning prior to scheduled outages *
- Maintenance evaluation after maintenance activities *
- Development of input/output dispatch curves *
- Knowledge & History capture

* Source: ASME PTC PM Performance Monitoring Guidelines for Steam Power Plants

Project Team

2. Project Description

2. Project Description Program Adjustment Scorecard

- □ Automate engineering calculations
- Data Validation & replacement
- □ Automate anomaly detection
- □ What if modeling (turbine & boiler)
- □ System Maintainability
- □ Instrumentation gap remediation

- □ Pilot new tools at one site to prove Real Time concepts
- Production Performance Group provide on-going program leadership, maintenance, and continuous improvement
- □ Standardize & Network Operator logs system
- Common dashboard for KPIs visible to entire company
- Consolidate tools sets where practical
- Educate employees about the bottom-line impacts they can have.

2. Project Description Program Exclusions

Closed loop optimization
Outage & Derate tracking
Asset Management

2. Project Description

3rd Party OLP systems:

Open Loop Systems (no DCS interface):

1. Thermal Performance Systems

2. Project Description What are others doing?

3. Implementation & Technology Instrumentation Gap Analysis:

•Unit by unit comparison on each point.

•Thermal Performance & Equipment condition points.

•Instrumentation added by:

➢piggy-backing on DCS upgrade projects

leading a monitoring network project where no DCS upgrade planned

3. Implementation & Technology Monitoring Instrument Network:

3. Implementation & Technology On-Line Performance Network:

3. Implementation & Technology Pilot site Selection

- Start with base load units.
- PRPS, a 2 unit coal fired facility was constructed in: 1981 (PR2) 1983 (PR1)
- DCS upgraded from Bailey Infi90 to Emerson Ovation during major overhaul on: PR2 (2006) PR1 (2008)
- Instrumentation gaps have been filled
- Capacity issues on PR2 boiler (O2 split, low exit temps, sec air system deficiencies)

3. Implementation & Technology

Project Timeline Summary

- January 2006: Began OLP system replacement research (forced by Emerson controls upgrade).
- April 2006: Hosted demos by 5 Third party OLP vendors. (Attended by PRPS, SHPS, BDPS, OS, BP&P).
- Summer 2006: S. McLeod attended 3 user group meetings (Scientech, General Physics, SmartSignal).
- Fall 2006: Assembled specification, received budget pricing
- January 2007: Submitted CPA.
- March 2007: Hosted demos by 4 Third party OLP vendors. (Attended by PRPS, SHPS, BDPS, QEPS, OS, BP&P).
- April 2007: Updated Instrument Gap Analysis
- April 2007: Managers meeting presentation
- *May 2007: S. McLeod attend user group meetings (NeuCo / Black & Veatch).*
- Fall 2007: Project Approval, Issue RFP
- 2008: Pilot system on PR2, Begin Instrumentation upgrades (SHPS, BDPS, QEPS)
- 2009-2010: Complete instrumentation upgrades, Install systems on PR1, SHPS, BDPS, QEPS
 SaskPower

3. Implementation & Technology **Thermal Performance Monitoring**

Heat

rates

Mass

flows

3. Implementation & Technology **Equipment Performance Monitoring**

400 200

		STAGE CLEANLINESS
CON	0.99	
WALL	0.97	
	0.00	
эпі	0.98	
SH2A	1.05	
	0 00	
3020	0.99	
SH2C	1.00	
SH1 & 2	1.51	
RH1 & 2	1.30	
	1 00	
RH3	1.22	
		FOULED CLEAN

Pump Curves

L/S

STAGE	EFF (%)	TARGET EFF (%)	Δ EFF. (%)
GOV STAGE	82.2	82.5	0.0
HP1 STAGE	79.0	82.6	-3.5
HP OVERALL	79.7	83.3	-3.8

Turbine Stage Efficiencies

Mill Curves

	ACTUALI	ACTUAL EXPECTED										
LEAN FACTOR	1.10	0.90J	0.20									
EMP (°C)	6.1	15.0	-8.9									
RESS (KPAA)	4.49	5.21	-0.66									
UBCOOLING (°C)	0.00	0.00J	0.00									

Condenser Performance

Boiler Cleanliness

	ACTUAL	EXPECTED	Δ
FFWT (°C)	245.1	241.5	3.7
ITD (°C)	-5.7	-1.2	-4.3
DCA (°C)	6.1	5.6	0.6
ΓRISE (°C)	40.4	39.6	0.8

FW Heater Performance

3. Implementation & Technology Anomaly Detection

MODEL	2DAHTRp
U2 DEAERATOR	3
CATEGORY	ок
MODEL HEALT	H 0.964
MODEL STATU	S ABNORMAL
ABNORMAL PO	INTS 2

UNIT pr2

PROCESSING RAT	E 300) second	ls	
VALIDATION PARA	METER	0.90		
TOTAL POINTS	20			
CUTOFF POINT P	RPS-2E	L-SVJT-7	90	
(PRPS-2EL-SVJT-7	90) SEL	ECTED	MEGAN	NATTS
CUTOFF VALUE	305.44			
HIGH CutOff 100	0.	LOW Cut	on	180.
ALARMS X out of 1	r: x =	10	Y =	12
	ALAR	NON	Resid	dual

	G	RAPHIC
ATTS		
180.	GROUP PLOTS	3 4
12	O	

🔶 🔸 Page 1 of 1

Status Legend: NORMAL ABNORMAL INACTIVE

INPUT POINT	DESCRIPTION	UNITS	ACTUAL	PREDICTD	VARIANCE	RESIDUAL	RESID HI	RESID LO	SIG AC	TTREND
PRPS-2EL-SVJT-790	(PRPS-2EL-SVJT-790) SELECTED MEGAWA	MW	305,443	299.335	0.294	3.482	0.00	0.00	Yes	-
PRPS-2SD-DVF-194	(PRPS-25D-DVF-194) CEP DISCHARGE FL	KG/S	209.395	209.640	0.586	5.040	0.00	0.00	Yes	Laurin
PRPS-2SJ-CVFT-033	(PRPS-2SJ-CVFT-033) COMPENSATED FW	KG/S	250.817	248.815	0.156	1.753	0.00	0.00	Yes	Loc.
PRPS-2SJ-TT-210	(PRPS-2SJ-TT-210) DEA FW IN TEMP	C	117.664	117.812	0.108	-0.149	0.00	0.00	Yes	Longer .
PRPS-2SJ-TT-215	(PRP5-25J-TT-215) DEA FW OUT TEMP	C	134.982	134.958	0.016	0.024	2.00	-2.00	Yes	Letter .
PRPS-2KD-DOT-207A	(PRPS-2KD-DOT-207A) DEAERATOR IN DI	ug/L	10.826	5.1627	3.477	5.609	2.00	-2.00	Yes	-
PRPS-2KD-DOT-207B	(PRPS-2KD-DOT-207B) DEAERATOR OUT D	ug/L	6.507	2.2316	12.587	4.275	0.30	-0.30	Yes	L
PRPS-2SN-TT-277	(PRPS-2SN-TT-277) HP HTR 4 DRAINS T	C	140.355	140.671	0.188	-0.316	0.00	0.00	Yes	1
PRPS-2SN-ZT-276A	(PRPS-2SN-ZT-276A) HP HTR 4 NORMAL	5	58.875	60.271	0.123	-0.364	0.00	0.00	Yes	Long
PRPS-2SE-PT-247	(PRPS-2SE-PT-247) DEA EXTRAC PRES	KPA	276.099	277.853	0.261	2.702	5.00	-5.00	Yes	Low-
PRPS-2SE-TT-249	(PRPS-2SE-TT-249) DEA EXTRAC TEMP	C	255.042	253,855	0.284	1.185	5.00	-5.00	Yes	Long
PRPS-2SE-ZIT-247A	(PRPS-25E-ZIT-247A) DEA BSTM STOP V	5	100.015	99.659	0.773	0.356	0.30	-0.30	Yes	Lotte
PRPS-2SJ-LCV-201	(PRPS-2SJ-LCV-201) DEA LVL CV	5	49.529	51.614	0.158	-0.609	0.00	0.00	Yes	Louis .
PRPS-2SJ-LIKPV-201	(PRPS-25J-LIKPV-201) DA LVL PROCESS	cm	270.297	269.974	0.481	0.734	2.00	-2.00	Yes	L
PRPS-2SJ-LT-201-A	(PRPS-25J-LT-201-A) DEA LVL A	CM	273.730	273.824	0.049	-0.094	2.00	-2.00	Yes	-
PRPS-2SJ-LT-201-B	(PRPS-25J-LT-201-B) DEA LVL B	CM	268.896	269.366	0.299	-0.470	2.00	-2.00	Yes	Louis
PRPS-2SJ-LT-201-C	(PRPS-2SJ-LT-201-C) DEA LVL C	CM	269.171	269.564	0.281	-0.393	2.00	-2.00	Yes	Lon
PRPS-25J-ZT-034	(PRPS-2SJ-ZT-034) LOW LOAD FW CV PO	5	4.832	2.2129	4.048	2.619	0.00	0.00	Yes	Lotter 1
PRPS-2SJ-ZT-201	(PRPS-25J-ZT-201) DEA LVL CV POSN	5	49.313	51.178	0.158	-0.616	2.00	-2.00	Yes	1
PRPS-2SJ-PT-212	(PRPS-25J-PT-212) DEA STORAGE TANK	КРА	184.181	184.299	0.534	5.451	5.00	-5.00	Yes	Lon

3. Implementation & Technology Rules Engine

3. Implementation & Technology Operator Log System

PRPS Operation	<mark>ons Log</mark>		Charge E Craig New Water T Ian Guigor	ingineer: ireatment	Operating Engineer Assistant Operator 1 Assistant Operator 1 Image: State S	Print Print Print Page
Log: All 🔄	Date: 2008-10-2	22 Shift:	08:00-20:00 💌			
1.00	DATE	TILIC		eur: -	DEMADVO	Manual Data
VTD	DATE	20.00.00				CRUI
	05/05/2008	20:00:00	Erozior Lanco		A CEP potiesd aland coal water lask	CH 02
CONTROL BOOM UNIT 2	05/07/2008	22:00:00	Nivon Bichard	4	Suitched from & to B CEP	ASHUN
ASH PLANT UNIT 1	05/08/2008	23:00:00	Anderson Pamela	4	Pulling bottom Ash A Leg	ASH1/2
ASH PLANT UNIT 2	05/09/2008	0:00:00	Anderson, Pamela	4	Pulling bottom Ash B Leg	THOIT OL
CHARGE ENGINEER	05/10/2008	1:00:00	Simpson, Homer	5	Requested limited Access from GCC to run on 1FD fan (A Fan)	VTP
CHARGE ENGINEER	05/11/2008	2:00:00	Simpson, Homer	5	GCC granted limited access for single fan operation.	
						ENV
						24 hr
						Lagoon
						Oil
Record: 14 4 1	▶ ▶ ▶ ▶ ♦ of 7	1	1			

3. Implementation & Technology Fleet Management Display

Alarm Management

New Pernance New Pernance to Pernan

- N														
Γ							Heat Rate	Capacity	Economic		Date			Links to
			Alarm				Loss	Loss	Loss	# Days in	Alarm		Alarm	Diagnostic
	Plant 🖵	Unit 🖵	Sourc 🗸	Alarm Description	Target	Actual	(kJ/kWh)	(MWh)	(\$/hr)	Alarm	Generated	Assessment	Bucket 🥃	Tree
	PRPS	PR2	PMAX	FWH #4 TTD Degradation	-1.4 C	6.0 C	35	-0.4	\$ (189.34)	123	07/04/2008	Since TTD ↑ and TR ↓ , then PARTITION PLATE FAILURE.	Maintenance w Unit	#4 FWH Perf
												Need to inspect heater internals.	Derate	
•	PRPS	PR1	PMAX	HP Turbine Efficiency Degradation	88%	86%	49	-0.8	\$ (30.10)	87	08/09/2008	Suspect increase packing leakage through N2 packing.	Maintenance w Unit Outage	HP Turb Perf
•	SHPS	SH1	PMAX	Condenser Cleanliness Degradation	85%	68%	108	-1.1	\$ (99.00)	45	09/20/2008	Condenser tubes have macro- fouled. Need to schedule tube cleaning.	Maintenance w Unit Outage	Cond Perf
•	PRPS	PR1	Manual	Transmission line limitation forcing unit derate	315 MW	305 MVV		-10		204	04/14/2008		Operational Task	
•	PRPS	PR2	PdP	A FD Fan motor bearing temp increase	75.0 C	88.0 C	4560	-150	\$ (6,750.00)	3	11/01/2008	Sleeve bearing showing early signs of failure. Risk of 50% derate.	Maintenance w Unit Derate	FD Fan Cond
	•	04/01/2	008	John Duff	Requeste	d operato	r to go check	c bearing.		•			<u> </u>	
		▶ 2008	3-04-01	Joe Blow	Checked	bearing o	n April 1 @ 1	3:00, and is	running hot.					
	•	04/23/2	008	John Doe	Took oil s	ample fro	m bearing ar	nd sent for a	nalysis					
	2008-04-01 Mike Bovette					e results.	attached							
	2008-04-01 John Doe Discussion on oil samp						ample result	s.						
	PRPS	PR2	PdP	B BPF motor bearing thermocouple out of calibration	75.0 C	88.0 C	0	0	\$ -	3	11/01/2008	Sleeve bearing showing early signs of failure. Risk of 50% derate.	Instrument Fault	BFP Cond

Findings: 2B BFP capacity deterioration

UNIT pr2		PROCESSING RAT	'E 300 s	econds						PdP A	RCHITECT		2600 -						
MODEL 2bBFP	om	VALIDATION PARA	METER	0.90						_			2400 -						
28 BEP W MOTOR		TOTAL POINTS	28							ASSE	SSMENT		2200 -						
		CUTOFF POINT P	RPS-2SJ-JT	-030B		(JRAPH					т	2000						
CATEGORY OK		(PRPS-2SJ-JT-030	3) BFP 2B P	OWER						ASSICH	CATECODY	0	2000 -						
MODEL HEALTH 0.95	3		214 A7							Maalon	CATEGORI	Ţ	1800 -						
MODEL STATUS	IORMAL	HIGH CUTOFF 1000	0 100						_		arm.	Â	1600 -						
	10	ALARMS Yout of	V. V - 4		U.	GROUP PLOT	rs	4 Point		Ackn	owledge	-	1400 -						
	12	ALARMS X OUL OF		10 1 - 12	-	<u>)</u>		4				н	1200 -						
			ALARM ON	N Residual		RADIAL	AR	kum			. 4 . 50	E	1000						
Status Legend: NORMAL	ABNORMAL INACT	IVE								🔶 Pag	e 1 of 2	A	1000 -						
	DECODIDATION		UNITO	AOTUAL		VADIANOE	REGIRIUM						800 -		-				
	DESCRIPTION		UNITS	ACTOAL	PREDICTD	VARIANCE	RESIDUAL	RESID HI	RESID LO	SIG AC	TREND	м	600 -						
PRPS-2SJ-JT-030B	(PRPS-2SJ-JT-030B) E	3FP 2B POWER	KW	3214.465	3153.04	0.421	82.172	50.00	-50.00	Yes	-		400 -						
PRPS-2SJ-IT-030B	(PRPS-2SJ-IT-030B) B	FP 2B CURRENT	Amps	498.514	487.485	0.408	11.029	10.00	-10.00	Yes	-		200 -						
PRPS-2SJ-FCV-033B	(PRPS-2SJ-FCV-033B)) MAIN FW CV 2B	%	68,182	67.108	0.215	2.354	0.00	0.00	Yes			0						
PRPS-2SJ-ZT-033B	(PRPS-2SJ-ZT-033B) N	MAIN FW CV 2B PO	%	69.125	65.966	0.363	3.972	3.00	-3.00	Yes	-		Ļ		20	40 6	0 8	0 100	120
PRPS-2SJ-DVF-220B-1	(PRPS-2SJ-DVF-220B-	-1) COMPENSATED B	kg/s	115.544	118.84 0	0.118	-1.626	3.00	-3.00	Yes	-		Ĭ		~	~ ~	Ĩ	(C	120
PRPS-2SJ-DVF-220B-2	(PRPS-2SJ-DVF-220B-	-2) COMPENSATED B	kg/s	115.284	120.513	0.241	-3.162	3.00	-3.00	Yes	-						-	13	
PRPS-2SJ-FT-220B-1	(PRPS-2SJ-FT-220B-1)) BFP 2B SUCTION	cmWC	336.731	360.285	0.222	-12.701	0.00	0.00	Yes	-] В(OILER	FEED P	UMP B
PRPS-2SJ-FT-220B-2	(PRPS-2SJ-FT-220B-2)) BFP 2B SUCTION	cmWC	335.220	370.038	0.415	-23.811	0.00	0.00	Yes	-		IN S	ERVI	CE?	- I			
PRPS-2SJ-PT-032B	(PRPS-2SJ-PT-032B) E	BFP 2B DISCHARGE	KPAG	18928.90	19324.0	1.089	-551.471	300.00	-300.00	Yes	Lawrence 1		SUC	TPR	ESS ((KPAA)			
PRPS-2SJ-PT-221B	(PRPS-2SJ-PT-221B) E	BFP 2B SUCTION P	KPAG	516.444	505.427	0.338	10.163	10.00	-10.00	Yes	-	Ī	DISC	н РБ	RESS	(KPAA)	1		
PRPS-2SJ-TT-583B	(PRPS-2SJ-TT-583B) E	3FP 2B PUMP THRS	с	44.376	45.279	0.616	-0.934	3.00	-5.00	Yes	and a second		FLO	wike	G/S)	· ·			
PRPS-2SJ-TT-578B	(PRPS-2SJ-TT-578B) E	3FP 2B PUMP DE B	с	58.673	68.666	8.935	-9.993	3.00	-5.00	Yes	-		FLO	WIL	/si				
PRPS-2SJ-TT-579B	(PRPS-2SJ-TT-579B) E	3FP 2B PUMP NDE	С	52.066	52.082	0.102	-0.138	3.00	-5.00	Yes	Laure 1		POV	/ER (κwn				
PRPS-2SJ-TT-580B	(PRPS-2SJ-TT-580B) E	SFP 2B OIL CLR O	с	37.646	39.870	0.789	-2.269	2.00	-3.00	Yes					,				
PRPS-2SL-PT-574B-1	(PRPS-2SL-PT-574B-1)) BFP 2B LUBE OI	kPa	111.069	110.177	0.225	0.911	2.00	-2.00	Yes	Letter 1		1			ACTUA		PECTED	HR EF
PRPS-2SL-PT-574B-2	(PRPS-2SL-PT-574B-2)) BFP 2B LUBE OI	kPa	112.099	111.811	0.074	0.307	2.00	-2.00	Yes	-		ENT	HALF	IK C)	27.9		23.9	-2.8
PRPS-2SJ-TT-030B1	(PRPS-2SJ-TT-030B1)	BFP 2B MTR DE B	с	58.505	58.264	0.200	0.242	3.00	-5.00	Yes			RISE	: (RJ)	NOJ				
PRPS-2SJ-TT-030B2	(PRPS-2SJ-TT-030B2)	BFP 2B MTR NDE	с	54.736	55.153	0.370	-0.493	3.00	-5.00	Yes	-		7			ACTUA	L EXF	PECTED	Δ
PRPS-2SJ-TT-030B3	(PRPS-2SJ-TT-030B3)	BFP 2B MTR WDG	c	95.035	88.379	1.160	6.687	3.00	-5.00	Yes	-		HEA	D	Ľ	2001.8	20	37.2	-52.1
PRPS-2KO-PDCV-316B	(PRPS-2KO-PDCV-316	B) BFP 2B GSW CV	%	60.000	54.291	2.474	5.709	0.00	0.00	Yes			EFF	(%)		70.3		81.4	-11.0

2.8

140 160 180

YES 607.8 19020.3

MW EFF

ALARM LIMIT 50.0J

0.1

	70.3	81.4	-11.0	5.0J
1 Sack Dowor				
Jaskrower				

4. Benefit Assessment

Findings: 2B PA Fan motor issue

4. Benefit Assessment

4. Benefit Assessment Program Scorecard update

- Automate engineering calculations
- **Data Validation & replacement**
- Automate anomaly detection
- What if modeling (turbine & boiler)
- System Maintainability
- **Instrumentation** gap remediation

- Pilot new tools at one site to prove Real Time concepts
- Production Performance Group provide on-going program leadership, maintenance, and continuous improvement
- □ Standardize & Network Operator logs system
- Common dashboard for KPIs visible to entire company
- Consolidate tools sets where practical
- Educate employees about the bottom-line impacts they can have.

5. Future Thoughts Anticipated Effects on Group

W.P. (Perry) Hill Supervisor 566-3339 phill@saskpower.com Plant Contact: <u>Shand</u>

D.E. (Dan) Hemingway Performance Specialist II 566-2868 <u>dhemingway@saskpower.com</u> Plant Contact: (reassigned to the SPOAD project)

D. (David) Mah Performance Specialist II 566-3338 dmah@saskpower.com Plant Contact: None (Full-time results support)

D.J. (Dwayne) Selensky Chemical Performance Specialist II 566-2282 <u>dselensky@saskpower.com</u> Plant Contact: All (Chemistry issues)

S.W. (Scott) McLeod Performance Specialist II 566-2243 <u>smcleod@saskpower.com</u> Plant Contact: Poplar River, Queen Elizabeth

A. (Alyssa) McLaughlin Performance Engineer I 566-3171 amclaughlin@saskpower.com Plant Contact: Boundary Dam B & C Plant

J. (Jason) Wasilieff Performance Engineer I 566-3589 jwasilieff@saskpower.com Plant Contact: Boundary Dam A Plant

A. (Arlen) Reed Performance Specialist I 566-2998 <u>areed@saskpower.com</u> Plant Contact: All (Chemistry issues)

- •Remote Monitoring (faster)
- •Field testing (less)
- •Statistical Reporting (auto)
- •Site meetings with plants

•Monitoring tools maintenance (model tuning)

5. Future Thoughts Project Next Steps

- Evaluate Fleet Management Display
- Evaluate Operator logs system
- Evaluate Web-client
- Evaluate server (likely migrate to dedicated server)
- Boiler What-if modeling built into PMAX
- Completion of punchlist items by Scientech
- Finalize overall system configuration
- Complete overall system evaluation
- Contract Scientech to configure other SaskPower plants

