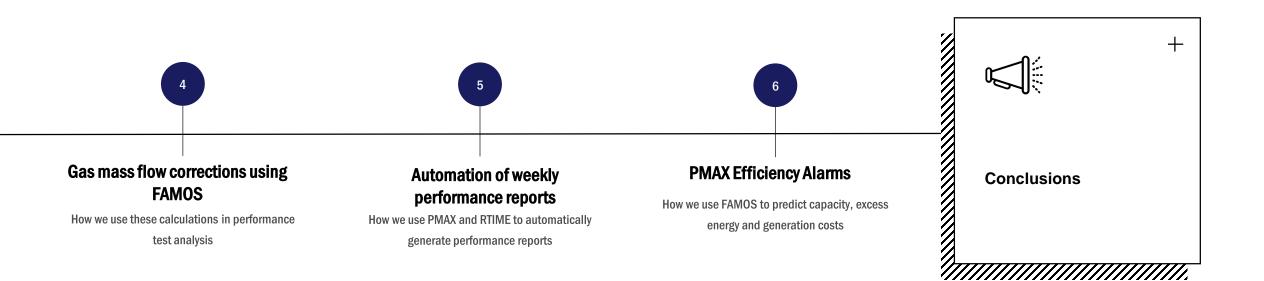

Performance monitoring as a key for continuous improvement of the efficiency in Power Plants

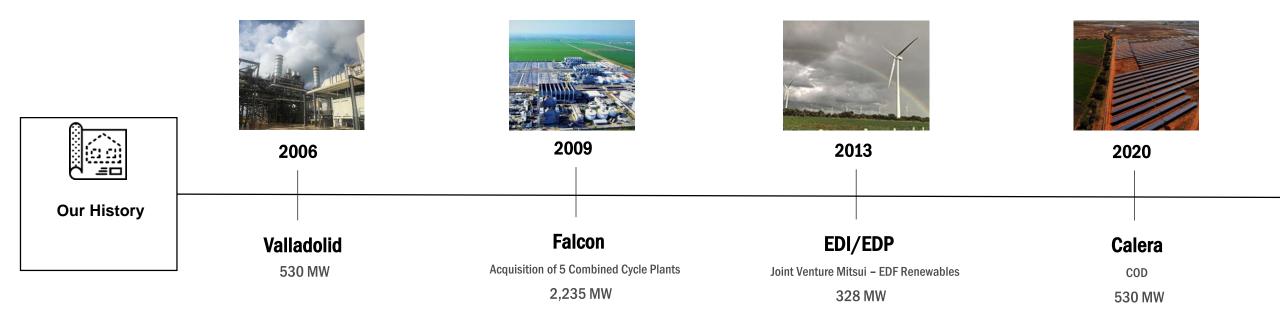
Nuriban Ortega O&M Monitoring Engineer

1/28/2020



monitoring of our power plants

About MPA *Who we are*



About MPA

Mitsui & Co. Power Americas (MPA) is the secondlargest private power generator in Mexico with more than 3GW of installed capacity today. MPA is a Power Generation Developer and Asset Management Company with a proven track record and knowledge of combined cycles, cogeneration, utility-scale solar and wind farms. MPA offers solutions to generators and electricity customers to improve their daily operations.

MPA History

MPA services

Energy Supply

Customized solutions that save company's money on those everincreasing electric bills. MPA is a Qualified Supplier operating in the Wholesale Market. We help improving our customers' daily operations with solutions such as excess energy.

Operation and Maintenance

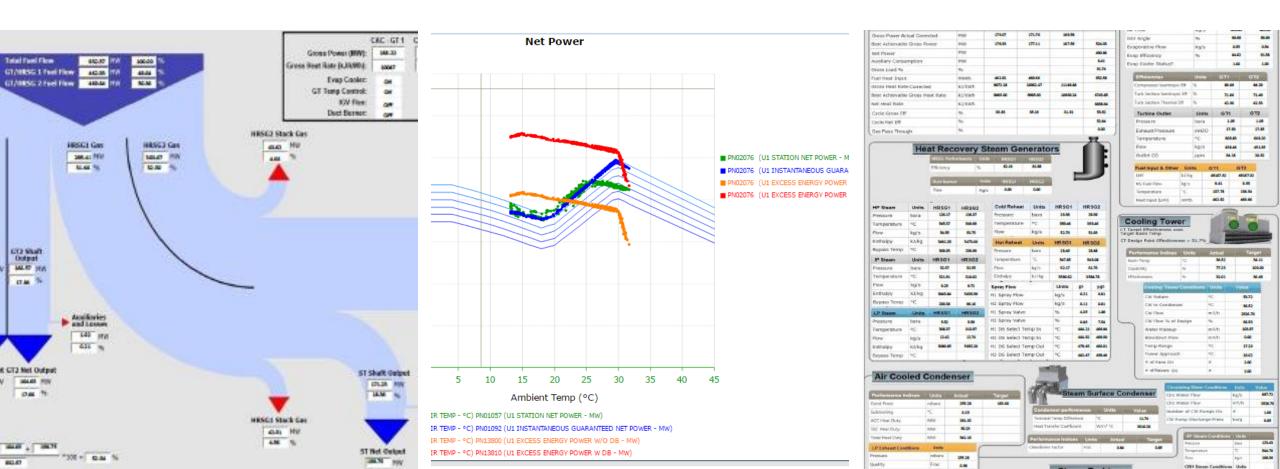
From distributed and on-site generation to large-infrastructure generation projects, we can assist throughout the whole process of developing, operating, maintaining or monitoring assets.

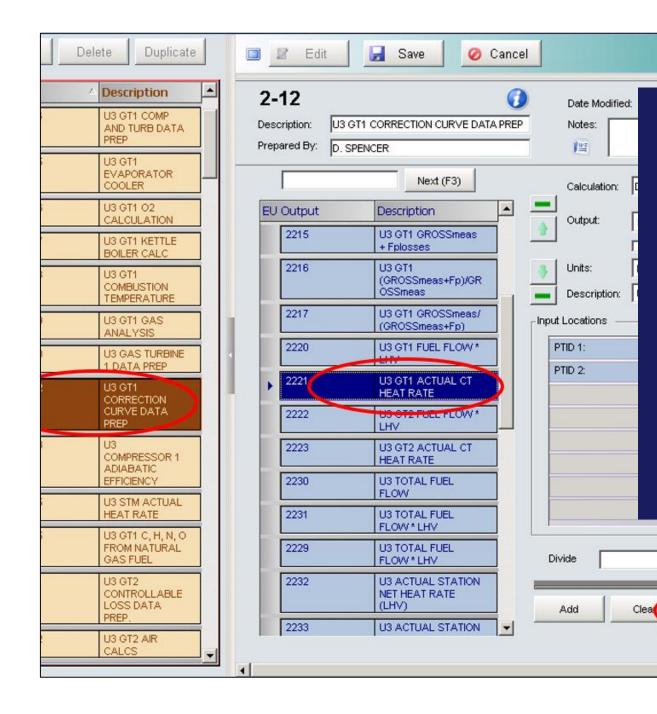
Project Development

We specialize in generating new power assets, focusing on solar and cogeneration technologies. From on-site to off-site solutions, we're always looking for the next new greenfield/brownfield opportunity.

Asset Management Services

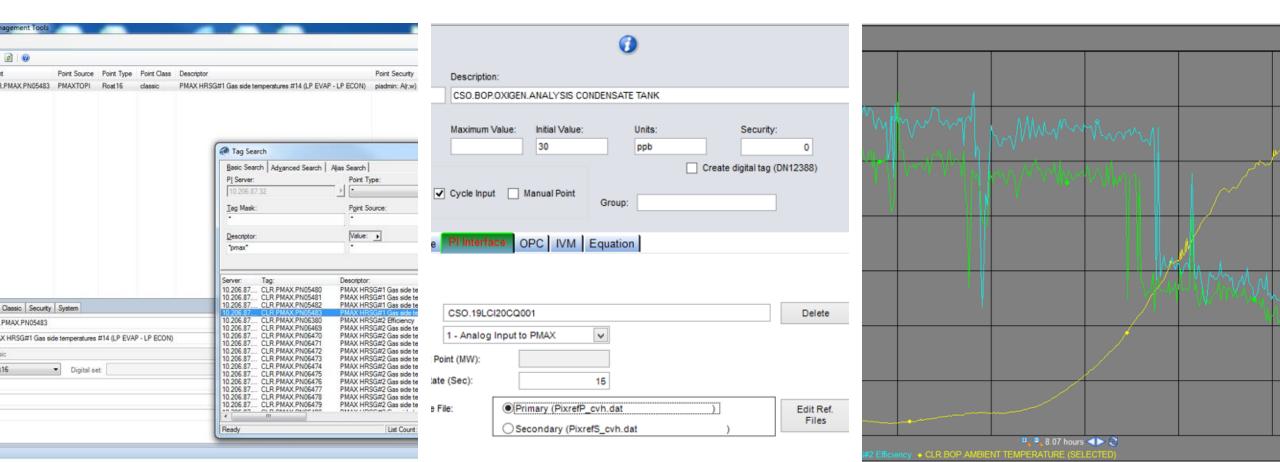
We specialize in digital services, solutions to help manage power assets and make the most of them without having to increase infrastructure. Constant optimization and continuous innovation allow us to build a tailored solution to each power plant.




PMAX in daily monitoring

Visualization of the most important performance variables

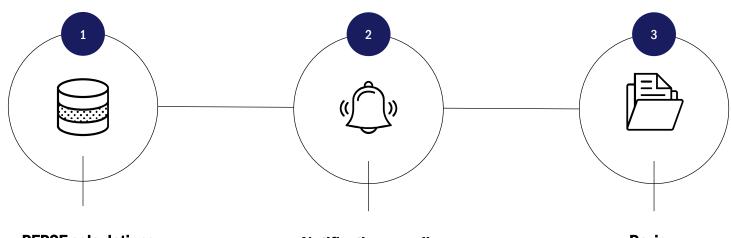
We have customized screens with real-time trends and KPIs for each of our plants. We can compare the actual performance with the best achievable of some variables. This provides us with valuable insights to detect any sign of degradation, e.g. a leakage in an ACC or loss of efficiency in a compressor.


Creation of new calculations within PMAX

We can create and modify calculation points in PMAX according to our needs. This enables us to continuously improve our analysis and keep track of the good performance of our assets.

Interaction between PI and PMAX

We have a bidirectional communication between our PI System and PMAX, which allows us to add PI tags into PMAX screens as well as importing PMAX points into PI through the creation of new tags.



Energy Excess Predictions

Energy excess predictions

One of the most **convenient uses of FAMOS** is the calculation of future excess energy and generation costs. We have implemented these in all our plants of the Fleet.

PEPSE calculations

This data is calculated using PEPSE, the PMAX Heat Balance Tool, based on the ambient conditions forecast and performance test results

Notification e-mails

PMAX automatically sends an e-mail to each plant and to the O&M Supervision team.

Review

This data is compared with O&M Supervision's models to provide an accurate offer to the market.

5

6

23.3

22.2

76

67

20.6

17.8

1.019

1.019

0.9900

0.9900

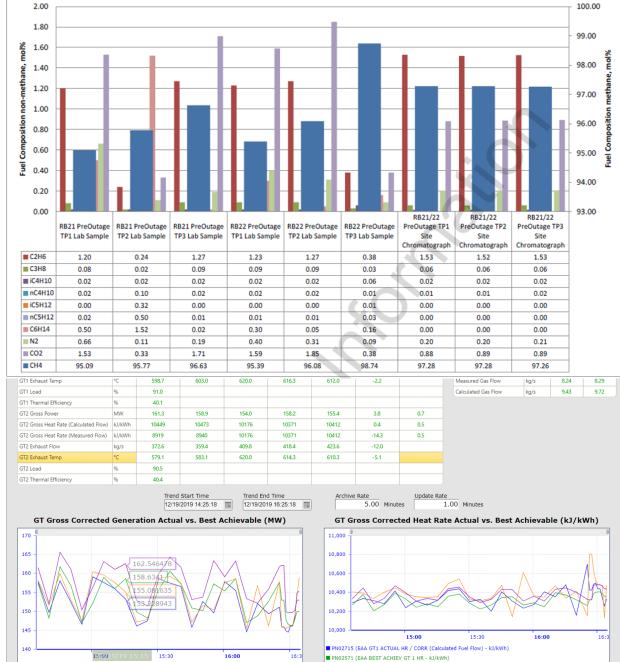
-DEC-1	9 BAD	12	Health 🛑			
:18:1	1 IVM	6	Alarm 🧲			
			s daily. Th rrect valu 5/2019		st inputs table.	mu
		te:12/1				
			7 /2019 Wet Bulb	Baro. Pressure Forecast (bara)	Power Factor Forecast (frac)	Fo (I
Fore	Ambient Temp Forecast	te:12/1 Relative Humidity Forecast	7 /2019 Wet Bulb Temp Forecast	Baro. Pressure Forecast	Factor Forecast	Fo (I
Fore	Ambient Temp Forecast (°C)	te:12/1 Relative Humidity Forecast (%)	7 /2019 Wet Bulb Temp Forecast (°C)	Baro. Pressure Forecast (bara)	Factor Forecast (frac)	Fo (I
Fore Hour	Ambient Temp Forecast (°C) 24.4	Relative Humidity Forecast (%) 96	7 /2019 Wet Bulb Temp Forecast (°C) 23.9	Baro. Pressure Forecast (bara) 1.018	Factor Forecast (frac) 0.9900	Ga Fo (l

Gas mass flow corrections

Gas mas flow corrections for performance tests

|--|

Flow measurements are automatically corrected by temperature, pressure and density according to ASM-MFC 3M-2004.


We store the historical data in our PI server

Heat Rate calculations are more accurate

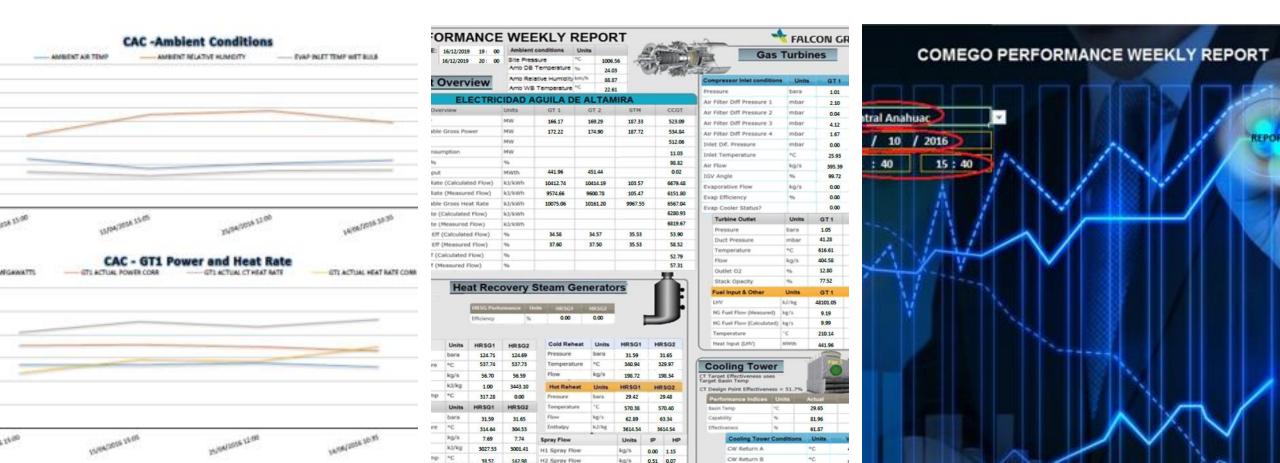
For performance tests, this data is automatically corrected to reference conditions

PN02734 (EAA GT1 ACTUAL POWER / CORR - MW) PN02570 (EAA BEST ACHIEV GT 1 POW - MW) PN03734 (EAA GT2 ACTUAL POWER / CORR - MW) PN03570 (EAA BEST ACHIEV GT 2 POW - MW)

PN03715 (EAA GT2 ACTUAL HR / CORR (Calculated Fuel Flow) - kJ/kWh)

PN03571 (EAA BEST ACHIEV GT 2 HR - kJ/kWh)

Rio Bravo RB21 & RB22 Pre-Outage: Fuel Composition Test Point (TP) Comparison



Automation of performance weekly reports

Falcon Group Performance Weekly Reports

By combining the capabilities of both Excel and PMAX (RTIME), we have developed a solution to create semi-automated performance reports. This enables us to devote more time to analyze our data and get meaningful insights faster.

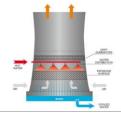
PMAX Efficiency alarms

PMAX Efficiency alarms

We have created customized alarms that the operator can see on his monitoring screens. Through this feature, it is easier to get an updated overview of the most recent performance issues that may require immediate attention.

The monitoring engineers can see all the performance alarms and alerts from each plant at the same time.

0		Date Modifie	d: 08/02/2016	Project:	cvh	ooling Tov	Gross	Gross Power (MW) 530.9			UTILITY								
ENSER & CT CALCULATIONS	j	Notes:				entral Lomas del Real Au			Power (MW)	Power (MW) 6.92 Net							-		
		12					Gross Power (MW):	CAC - GT 1	CAC - GT 2	CAC - S	-		-	_	_	_	_	_	
Next (F3)		Calculation:	Formula	This funct result in th	ion calculates the ie EU table.		Gross Heat Rate (kJ/kWh):	10232	10338	11008		Т	ab 3	Tab 4	Tab	5 Tab 6	Tab 7	Tab 8 T	Tab 9 Ta
scription		Output:	PN12201	All point n [PN02001]	ames must be in s		Evap Cooler:	Off		incender I	PCS		Unit:						
DESIGN OW Flow			Clear Validity	[P1402001]			GT Temp Control: IGV Flex:	Off	Off	G.P.T	-		cac		_				
Cooling Tower	4	Units:					Duct Burner:	Off	Off	98.0	%	Ľ	cac						
Cooling Tower	-	Description:	U4 PCS OFF Alarm			Fan 1	Fan 2		Contrast.	wer Condit				Refresh		Acknowle	dge page	Export Ala	arm List
Cooling Tower CW	_	Locations —	N + - + 7		ts: 💌 Formula:	(off	Off		CW Retur		2	Des	criptio	n			Units	Value	Limit
Cooling Tower C/V			2200]==0,0.9,0						CW to Co	ndenser									
Design Cooling						and any log of			CW Flow										
wer Capability						and and a second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CW Flow	% of Design	92	U2 (COND	SUBCOO	LING		°C	0.0786	0.00
Predicted Cooling wer CW Flow %						1	REAL PROPERTY AND IN THE REAL PROPERTY AND INCOMENTS OF		Water Ma	keup		U2	HRSG2	DOWNS	TREAM	IP2 BYPASS	DEGC	311.6104	100.00
Cooling Tower									Blowdown	Flow		112	HRSG2		TREAM	LP2 BYPASS	DEGC	55.1028	2
Predicted Cooling									Temp Ran	ige	-								
wer Basin Temp at									Tower App	proach		U2	HRSG2	. HP BYPA	ASS OUT	TLET STEAM	DEGC	230.9375	5
Cooling Tower						Units Actu	al Target		Tower Ca	pability		U2	HRSG1	DOWNS	TREAM	IP1 BYPASS	DEGC	326.6309	100.00
fectiveness (Actual)	Div	ide	Multiply:		Add	*C 19.1	1 0.0		Basin Lev	el 1		112	HPSGI		TDEAM	LP1 BYPASS	DEGC	54.4380	• \
Cooling Tower fectiveness	_			, 		% 0.0	100		Basin Lev	el 2								54.4300	
redicted Basin Temp)	1	Add	Clear Duplicate	Delete	1	% 0.0	0.0		Basin Lev	el 3		U2	HRSG1	. HP BYPA	ASS OUT	FLET STEAM	DEGC	314.6094	300.00
PCS ON/OFF						uses Target Basin eness = 51.7%	Temp		# of Fans	On		CAC	C.BOP.	O2 ANAL	YSIS AC	C	ppb	14.5996	5



Conclusions

Achievements

Thanks to the use of PMAX solutions, MPA has achieved important results in the operations and efficiency improvement.

PCS ON/OFF alarms

The use of the PCS has been more efficient since we created ON/OFF alarms based on the current ambient conditions. This has led to significant reductions in operation times (up to 150 h less per year) and therefore important savings in make-up water.

0₂ leakages in the ACC

High concentrations of O2 were found and alarmed by PMAX in the ACC. This was detected by a deviation in the condenser pressure respect to the Best Achievable.

Detection of compressor degradation

We were able to detect a degradation of up to 1.3% and 1% in the compressors of one of our plants, which meant an 80 kJ/KWh Heat Rate degradation in the whole combined cycle plant. After this finding, an inspection was made so both compressors, bell mouth, IGV and CR1 were found dirty and cleansed afterwards.

Accuracy in performance test calculations

With gas mass flow corrections now we are able to calculate corrected power and heat rate according to norm ASME MFC-3M-2004 with more accuracy, which in some cases can lead to a bigger revenues.

Thank you!