

DC Cook Reactor Controls Instrumentation Replacement Project

2013 Scientech User's Symposium

Robert Ammon August 2013

Steam Generator Control System Replacement

Project

Organizations

- DC Cook (Utility)
- Sargent & Lundy (A/E)
- Scientech (Vendor)
 - Hurst Technology (Subcontractor)

Steam Generator Control System Replacement

Project

- Schedule (Original)
 - Contract Award (SGWL) Dec 2012
 - Unit 1 Hardware Design Document (SGWL) Apr 2013
 - Unit 1 System Staged (SGWL) Oct 2013
 - Unit 1 FAT (SGWL) Jan 2014
 - Unit 1 Simulator Install (SGWL) Mar 2014
 - Unit 1 Plant Install (SGWL) Oct 2014
 - Unit 2 FAT (SGWL) Jun 2014
 - Unit 2 Simulator Install (SGWL) Aug 2014
 - Unit 2 Plant Install (SGWL) Apr 2015

Steam Generator Control System Replacement

- Non Safety Reactor Controls Instrumentation
 - Steam Generator
 - Water Level Control
 - Pressure Control
 - Volume Control Tank Level Control
 - Letdown Heat Exchanger
 - Discharge Temperature Control
 - Discharge Pressure Control
 - Feedwater AP / MFP Speed Control
 - Pressurizer
 - Pressure Spray & Heater Control
 - Level & Charging Pumps Flow Control

- Non Safety Reactor Controls Instrumentation
 - Steam Dump Valves
 - Boric Acid & Primary Water Flow To Blender Control
 - Rod Control
 - Main Feedwater Pump Suction Pressure Control
 - East & West Feedwater Pump Steam Pressure Control
 - Manual Loading Stations
 - Hot Shutdown Panel Controllers

- Installed as a replacement for original Foxboro system ~1991
- 12 Control Group Cabinets
 - Separated in Control Groups 1-4
 - 2 4 cabinets per control group
 - Taylor / ABB Mod 30 Math Units
 - Taylor / ABB Mod 30 Controllers
- 2 Interface Cabinets
- Main Control Board
 - Taylor / ABB Mod 30 Controllers
 - Yokogawa Trend Recorders
 - Various Indicators
 - Devar controllers

- Main Control Board
 - 8 Control Panels
 - Steam Generator (SG)
 - Boric Acid (CVCS) (BA)
 - Safety Injection / Accumulators (SIS)
 - Containment Spray and Relief (SPY)
 - Delta T and Unit (DTU)
 - Residual Heat Removal (RHR)
 - Pressurizer (PZR)
 - Rod Control (RC)

Original System

- Original Project Scope (Phase I)
 - Steam Generator Water Level Control
 - Steam Generator Pressure Control
- Subsequent Project Scope(s) (Phase II and later)
 - Remaining systems
- S&L
 - Based upon preliminary EC work recommended consolidating replacement into one activity
 - RCI individual systems intermixed in the control group cabinets
 - Phased project unable to maintain control group separation

Original System

SGWL Project

- S&L EC Activity suspended
- Scientech Activity slowed to that not affected by expansion
- S&L RCI Functional Requirements Specification development
- DC Cook pursued expanded project approval
 - Replace all RCI systems EXCEPT Hot Shutdown Controllers
- S&L and Scientech contract modified for expanded scope
 - Scientech expanded scope ~3 times original project scope

Reactor Controls Instrumentation (RCI) Control System Replacement

Updated Project

- Schedule (RCI)
 - Contract Award (RCI) Jul 2012
 - Lead Unit changed to Unit 2
 - Unit 2 Hardware Design Document (RCI) Sep 2013
 - Unit 2 System Staged (RCI) Apr 2014
 - Unit 2 FAT (RCI) Jul 2014
 - Unit 2 Simulator Install (RCI) Oct 2014
 - Unit 2 Plant Install (RCI) Apr 2015
 - Unit 1 Hardware Design Document (RCI) Jan 2014
 - Unit 1 FAT (RCI) Jul 2015
 - Unit 1 Simulator Install (RCI) Sep 2015
 - Unit 1 Plant Install (RCI) Apr 2016

Project Objectives

- Like System Replacement (Except...)
 - Maintain Control Group Separation
- Increased System Redundancy and Availability
 - New Feedwater Regulating Valve positioner
 - Redundant demand inputs
 - Redundant positioner outputs
 - Diagnostic output
 - Redundant Input Power
 - Control Room Inverter (CRID) (primary existing)
 - Lighting power (secondary new)
 - Auto Transfer Switch in the control group cabinets for non redundant input power devices
 - Redundant I/O
 - All inputs and outputs are redundant I/O
 - Fully Redundant Controllers

Project Objectives

Failover HMI

- Control panel monitor organized into failover pairs
- Failure of a monitor causes a combined display for both monitors on the remaining unit
- System Monitoring
 - All equipment automatically monitored for correct operation
 - Annunciator Alarms
 - RCI Failure
 - Loss of a system function
 - RCI Trouble
 - Loss of a redundant component
 - Non annunciator alarm

Project Objectives

Reduction in the number of system components

- Control panel components
 - For example, eliminate 2/3 of the RCI physical components on the SG panel
- Diagnostics, Maintenance and Testing
 - Significant reduction in the number of system test points (and associated calibrations and surveillances)
- Data Historian
 - Millisecond archive data
- Standard R*TIME System Reports
 - Point Summaries
 - SOE messages
 - Alarm messages

- System Architecture
 - RTP 3000 I/O Equipment
 - RTP NetArrays Control System Software
 - Scientech developed NetArrays control implementation
 - Only system component required for automatic control functions
 - R*TIME Server
 - Data Historian
 - System Monitoring
 - HMI functions
 - NO control system implementation
 - R*TIME Viewer HMI
 - Supervisory control
 - Manual / Auto functions
 - Data Display

- Unit 1/2 Systems
 - Retain and reuse control group cabinets
 - Retain and reuse 80 VDC power supplies
 - Retain and reuse 120 VAC Annunciator system interposing relays
 - Retain and reuse PPC I/O resistors (current outputs to voltages inputs on PPC)
 - New I/O equipment
 - New 24 VDC power suppliers
 - New 120 VAC input power auto transfer switches
 - New servers and networking equipment
 - New control board HMI monitors, computers and KVM equipment

- Simulator 1/2 Systems
 - New equipment cabinets
 - New servers and networking equipment
 - Same type, different quantities as Unit systems
 - New control board HMI monitors, computers and KVM equipment
 - Same as Unit systems

- Maintenance, Training and Testing System
 - New equipment cabinets
 - New 80 VDC power supplies
 - New 24 VDC power suppliers
 - New I/O equipment (subset)
 - New servers and networking equipment (subset)
 - New control board HMI monitors, computers and KVM equipment (subset)
 - Two I/O systems
 - Maintenance and Training node
 - Testing node
 - Two nodes interconnected, outputs on M&T node connected to inputs on Test node and vice versa

- RTP I/O Equipment
 - Redundant Controllers
 - Redundant I/O
 - Redundant Power Supplies
 - Current inputs
 - 4-20 ma
 - 10-50 ma
 - Current outputs
 - 4-20 ma
 - 10-50 ma
 - +/- 10 VDC
 - Digital Inputs
 - 24 VDC
 - 120 VAC

- RTP I/O Equipment (cont.)
 - Digital Inputs
 - 24 VDC
 - 120 VAC
 - Digital Outputs
 - 24 VDC
 - 125 VDC
 - 120 VAC
 - Termination modules
 - 20% spare channels
 - Unit systems are 4 independent DAS nodes, one per control group

- Servers
 - Installed in the control group cabinets
 - Redundant servers
 - Environmental requirement is 104 °F
 - Unable to use main stream equipment (Dell, HP, IBM, etc.)
 - Built to order servers from Advantech
 - Unit systems are 4 independent systems, one per control group
 - Simulator systems are 1 system per simulator

- Networks
 - Network switches installed in the control group cabinets
 - Three separate networks
 - I/O network
 - HMI network
 - Display network
 - Dual Redundant switches (HMI / DAS network)
 - Triple Redundant switches (I/O network)
 - Servers connected directly to I/O network via separate VLAN configuration on I/O network switches

Replacement Equipment

Networks

- HMI Network separated into A train and B train network switches
 - A train and B train network switch per control group
 - A train switches interconnected
 - B train switches interconnected
 - A and B train switches NOT interconnected
- All network cabling new CAT-6 Ethernet

- HMI Equipment
 - Cyber Research panel mounted monitors
 - Touchscreen
 - Through panel mounting
 - 6", 8" 10" and 21" sizes
 - Landscape and portrait orientation

Development Process

- Display Creation
 - 30 unique displays at 4 different video resolutions and 2 different video orientations
 - Normal displays and failover displays
- Database Creation
 - Because the original system was not a computer based system, it has to be created from scratch
- Temporary Control Group Cabinets
 - Support staging of the replacement system in Idaho Falls

Development Process

Equipment Testing

- Seismic II/I for control panel monitors and KVM extenders
- EMI/RFI for control panel monitors and KVM extenders
- EMI/RFI for Control Group Cabinet equipment
 - Representative cabinet configuration (12 different cabinet configurations, will use a "maximum" cabinet configuration)

System Testing

- Simulator Development Test
 - Unit 2 Simulator system delivered early
 - Interfaced to Simulator inline with existing system
 - Full suite of "operational" and "upset" test conditions
 - Comparison of replacement system to existing system

Development Process

System Testing

- FAT test
 - Each of I/O input and output verified
 - Each control system function verified
 - Each HMI display verified
 - Data display
 - Failover
 - Operator supervisory control actions
 - System redundancy verified
 - Servers
 - Networks
 - I/O equipment
 - System monitoring

Development Process

System Testing

- SAT test
 - Restage replacement system at DC Cook
 - Near repeat of the FAT test

Implementation Issues

- Scientech Factory Staging
 - 125 VDC power
 - Reuse variable power supplies purchased to support ANN system
 - 80 VDC control loop power supplies
 - Purchase units for use in Idaho Falls and deliver to DC Cook as spares
 - 120 VAC interposing relays
 - TBD

Replacement System Challenges

I/O Equipment

- New I/O cards required
 - 10-50 ma analog current input
 - new termination module
 - 4-20 ma analog current output
 - 600 Ohm load
 - 10-50 ma analog current output
 - 600 Ohm load

Replacement System Challenges

HMI Equipment

- Control panel mounting of monitors
- No space for HMI computers in or behind control panel
 - Computer mounted in the control group cabinets
 - KVM extenders connect monitor and computer
 - Rack mounted units in control group cabinets
 - Mini adapter (no power required) on monitor in control panel

- Environmental Requirements
 - 104 °F requirement
 - No control group cabinet ventilation
 - New model of server computers, HMI computers and engineering workstation
 - Advantech Industrial Computers

Replacement System Challenges

Control Algorithm

- 4 separate NetArrays project implementations (Unit)
 - Common components (Steam Generator)
 - Different components (Other systems)
- Use same control implementation in the Simulator
 - No I/O equipment or controllers
 - Same control algorithm
 - Build single NetArrays project by merging the 4 separate unit projects and remove controller and I/O equipment specifics
 - Limitation on single RTP Simulator
 - Multiple instances of RTP Simulator not supported on a single computer
 - Limitation on RTP Simulator interface
 - RTP Simulator accepts connections from local computer only
 - Utilize DCMNODE for R*TIME Interface
 - Develop proxy agent for Simulator interface

- System Staging
 - Temporary cabinets
 - Temporary 80 VDC power supplies
 - Temporary 120 VAC interposing relays
 - New Feedwater Regulating Valve positioner
 - Mounting 30 control panel monitors

- 30 Control Panel Monitors
 - New control panel cutouts
 - Clearance with front side control board controls
 - Clearance with back side control board supports
 - No redundant AC power available
 - No location available for computers

- Control Group Cabinets
 - Cabinets have to be retained to retain field termination wiring
 - Test panels need redesigned / replaced

- Project
 - Change from a pure I&C system to a system with IT components
 - Cyber Security requirements still not defined
 - Unit 1 and Unit 2 systems are similar but not identical
 - Aggressive Schedule
 - Utilize lessons learned from PPC and ANN projects

- Installation
 - SAT Test
 - Restage complete system in temporary location for testing prior to physical installation
 - Outage based
 - Significant concern on the amount of work required to be performed
 - Air Conditioning
 - Back Control Panel
 - Some control group cabinets receive minimal room air conditioning cause higher cabinet temperatures

Questions?