Cooling Towers Real Time Performance Monitoring

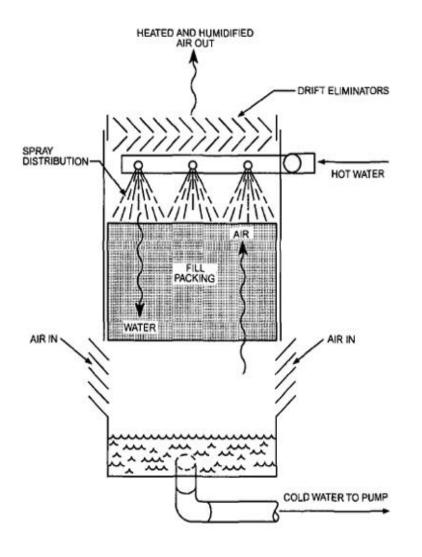
EPRI Cooling Tower Technology Conference - 2018

Jeff Marion – Exelon Greg Alder – Curtiss-Wright

Cooling Tower Purpose

- Remove heat from circulating water system
- Principal of operation:

Use cool air flow to remove sensible and latent heat from circulating water by heat transfer and evaporation

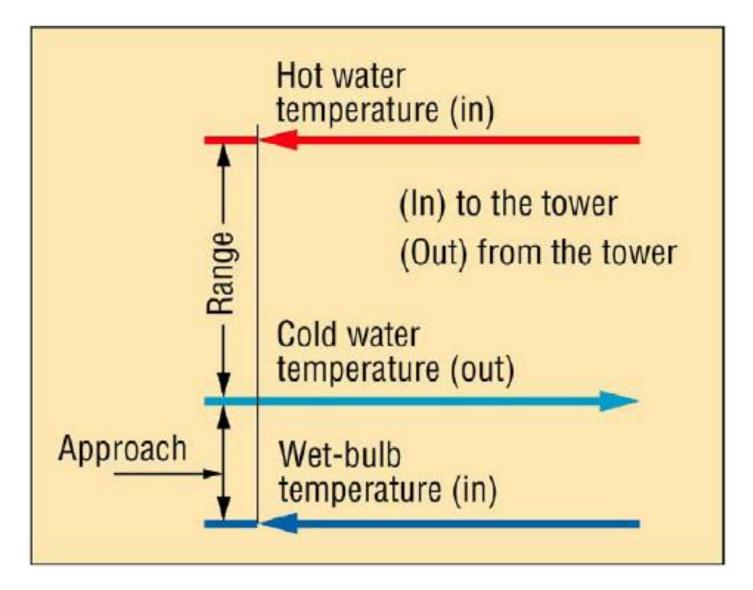

Air is heated as it passes through the circulating water spray decreasing density and providing buoyancy to maintain flow (natural draft) or fans (mechanical draft) are used to push or pull air through the tower

• Types:

Natural Draft Cooling Tower Mechanical Draft Cooling Tower

Cooling Tower Operational Theory

A cooling tower is a heat exchanger where two fluids (air and water) are brought into direct contact.


The heat gained by the air equals the heat lost by the water

 $G(h_2-h_1) = L(t_1-t_2)$

- G = Mass flow of dry air lbm/min
- h₁ = Enthalpy of entering air btu/lbm (dry air)
- h₂ = Enthalpy of leaving air btu/lbm (dry air)
- L= Mass flow of water lb/min
- t₁ = Hot water temperature entering tower
- t₂ = cold water temperature leaving tower

Cooling Tower Temperature Relationships

Cooling Tower Performance Calculation – Input Parameters

- WBT (Wet Bulb Temperature)
- DBT (Dry Bulb Temperature)
- RH (Relative Humidity)
- CWT (Cold Water Temperature)
- HWT (Hot Water Temperature)
- CW Flow (Circulating Water)
- Fan Horse Power

When RH = 100%, the air is not able to hold any more water and so water will not evaporate in 100% humid air (WBT = . DBT). But when the RH is less than 100%, the WBT will be less than the DBT and water will evaporate.

Performance Calculation Results & Definitions

- Cooling Tower Range = HWT minus CWT
- Cooling Tower Approach = CWT minus WBT
 - lower is better; good parameter to trend
 - approach changes are inverse to airflow passing through tower
 - airflow in natural draft towers is a function of buoyancy from air density delta between inside to outside of tower
- Predicted CW Flow
 - obtained from manufacturer design curves and input parameters
- Capability = Ratio of actual and predicted CW flow
 - actual flow corrected for fan power in mechanical draft towers
- Predicted CWT
 - obtained from manufacturer design curves and input parameters
- Generation Impact
 - difference in generation based upon actual and predicted CWTs

Cooling Tower Capability

- The capability is an indicator of how close the tower is able to bring the CWT to the WBT of the incoming air (lower approach).
- A larger cooling tower [i.e. moves more air and/or has more fill] will produce a lower approach for a given heat load, flow rate and entering air condition.
- The lower the WBT (indicates either cool air, low humidity or a combination of the two) the better the tower can cool the water.
 - the thermal performance of the cooling tower is thus affected by the entering WBT

Cooling Tower Predicted CW Flow and Temperatures

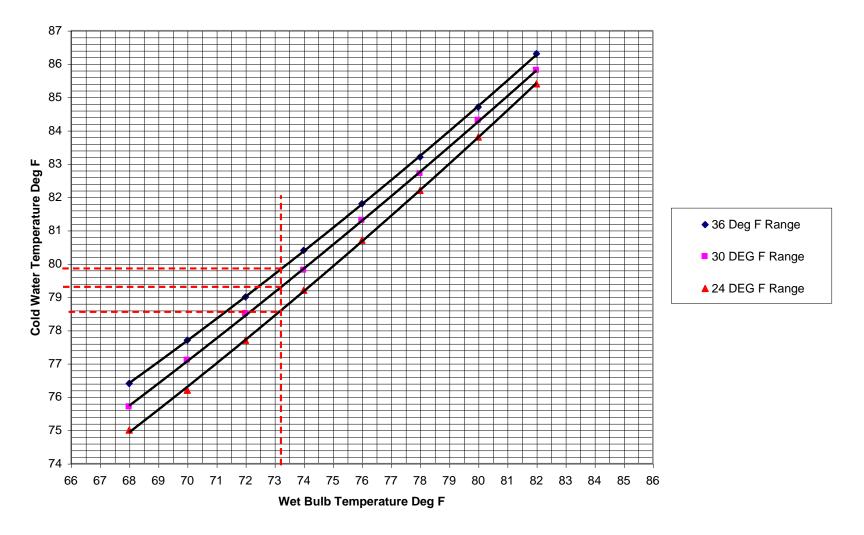
- Obtained using set of manufacturers performance curves
- Curve outputs include:
 - CWT
- Curve inputs include:
 - WBT
 - Range
 - RH

The Following Slides Show Step by Step How to Calculate Predicted CW Flow and Capability

Step 1: Collect Curve Input Data (test or real-time)

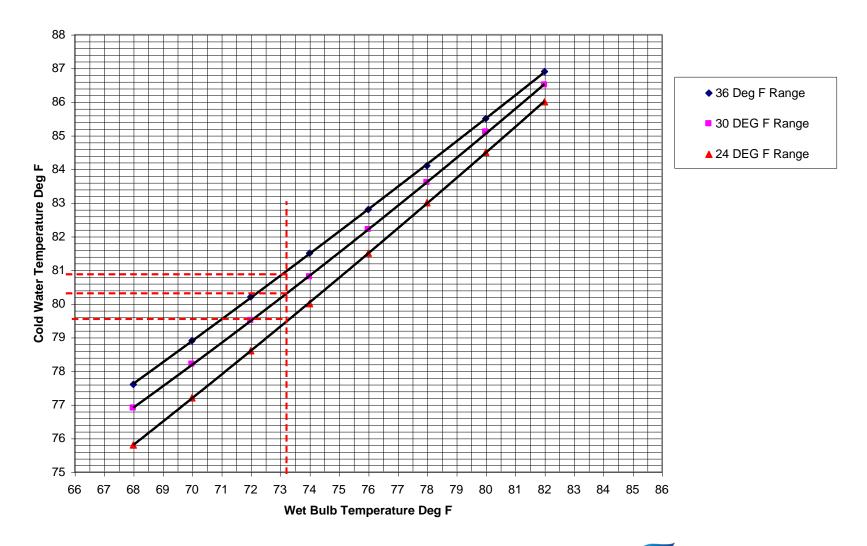
Step 1: Test Data										
Parameter	Reading	Units								
Flow	9500	gpm								
CWT	85	Deg F								
WBT	79.8	Deg F								
Range	28	Deg F								
Fan Power	110	HP								

Step 2: Read Predicted Values from Curves

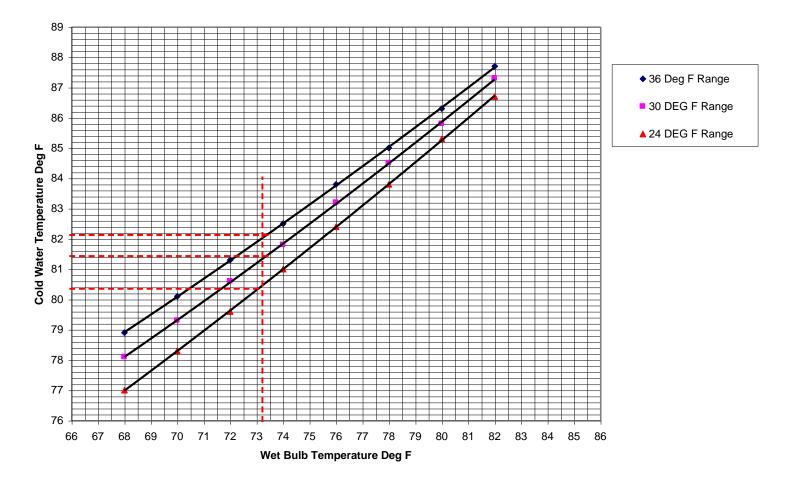

Step 2: Read Predicted Values From Vendor Supplied Performance Curves at Measured Wet Bulb Temperature and CW Flows

Step 2 Plot	Perf. Curve	Data	
Range	9000	10000	11000
24	83.9	84.5	85.0
30	84.3	85.1	85.9
36	84.5	85.2	86.4

Cooling Tower Performance Curve – 9000 GPM


9000 gpm vendor performance curve

Cooling Tower Performance Curve -10000 GPM


10000 gpm vendor performance curve

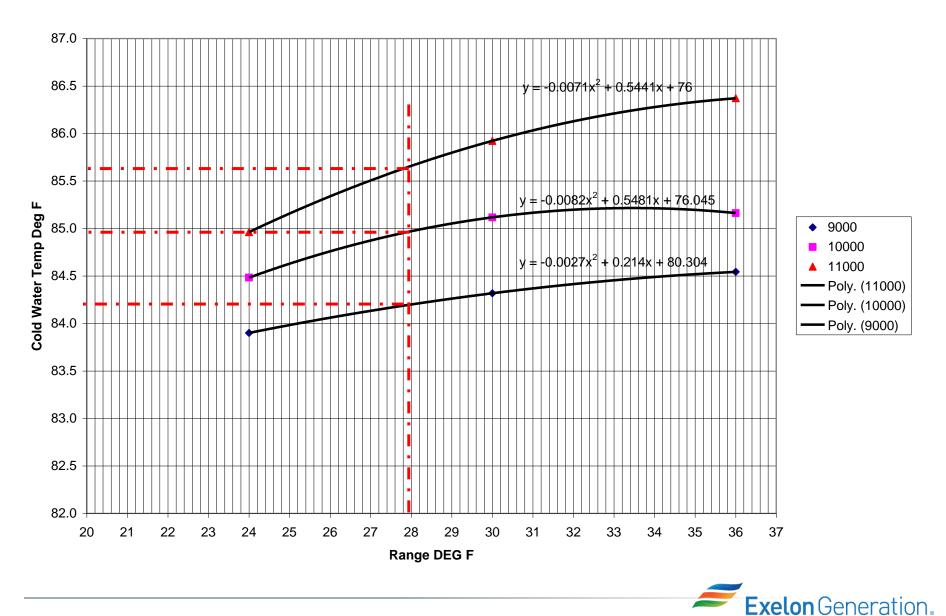
Exelon Generation.

Cooling Tower Performance Curve -11000 GPM

11000 gpm vendor performance curve

Exelon Generation.

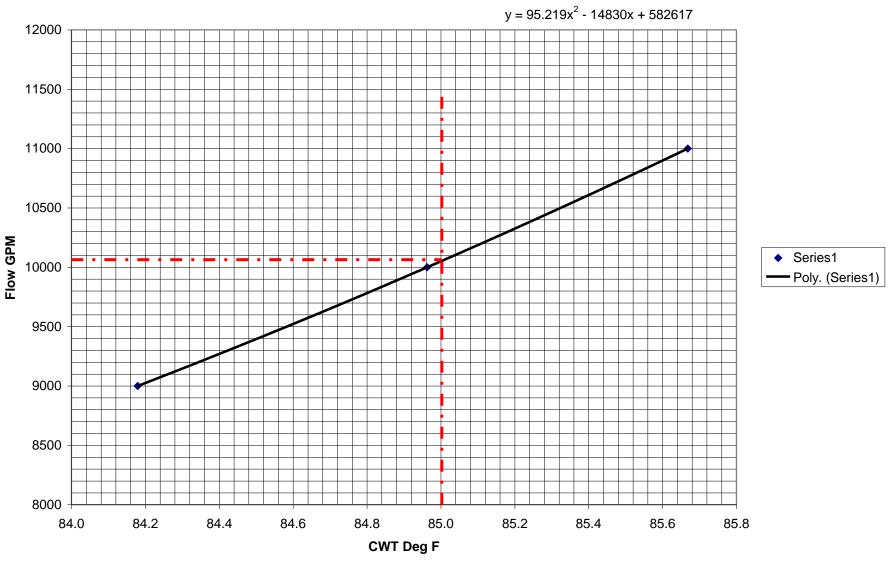
Step 3: Use Step 2 Data to Produce CWT/Range Curves


- Plot data from Step 2 to produce CWT vs. Range Curves.
- Solve for each flow curve at the range measured by the input data.

Step 3: Plot CWT vs Range										
Flow rate	CWT									
11000	85.7									
10000	85.0									
9000	84.2									

Step 3: Use Step 2 Data to Produce CWT/Range Curves

Plot CWT VS Range for all flows (Step 3)


Step 4: Determine Predicted CW Flow

Step 4: Determine Predicted CW Flow

- Cross plot Step 4 graph to produce a CWT vs. Predicted CW Flow curve.
- Read from this curve the Predicted CW Flow at the measured CWT.

Step 4: Plot CWT vs. Predicted Flow Plot of CWT vs Predicted Flow and test range and Wet Bulb Temperature (step 4)

Exelon Generation.

Step 5: Correct Actual CW Flow for Fan Power

Adjusted Test Flow =

Test Flow * (Design Fan HP/Test Fan HP)^{1/3}

Design Fan HP = 120

Measured Fan HP = 108

Adjusted Test Flow = $9500 \times (120/108)^{1/3} = 9780$ gpm

Mechanical Draft only. Natural draft has no flow correction.

Step 6: Calculate Cooling Tower Capability

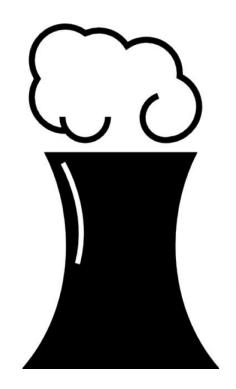
% CAPABILITY = <u>ADJUSTED CW FLOW</u> x 100 PREDICTED CW FLOW

% CAPABILITY = <u>9780 GPM</u> x 100 = 97.56% 10024 GPM

Exelon Nuclear Units with Cooling Towers

- Byron Unit 1 & 2 (Counterflow Conversion from Cross flow)
- Nine Mile Point Unit 2 (Counterflow)
- Limerick Unit 1 & 2 (Crossflow)
- TMI A (Counterflow Conversion) & B (Crossflow)
- Dresden 2 & 3 (Mechanical Draft, Counterflow)
- Peach Bottom 2 & 3 (Mechanical Draft, Crossflow)

Byron 1 & 2 (Counterflow Conversion from Crossflow)


Exelon Cooling Tower Thermal Performance Background

Background:

- Cooling tower monitoring with Excel lacked functionality due to software upgrades and using off-line data
- PMAX, a recently available real-time cooling tower monitoring tool needed verification to be used as a replacement to Excel based performance calculations

Goals:

- Audit the site-specific spreadsheets and PMAX engineering models and then compare to ensure accurate performance monitoring of cooling towers
- Replace site-specific spreadsheets with PMAX

Exelon Cooling Tower Calculation (Excel Based)

Exelon. Nuclear	Cooling	Tower Capability Exelon Nuclear	And the second	Q)				
Byron 1 NDCT		LAEIOII NUCIEA	Select site at le	6 (= DED)	Car	10	Tana	18
Byron I NDCI		These blocks are formulas DO NOT EDIT	Select site at le	(IN RED)		ung	Tower	
Start Date	mm/dd/yy hh:mm:ss	7/5/18 1:00 PM	Type in your start time at left			15	21	
End Date	hrs	7/5/18 2:00 PM				$\langle \langle \rangle$		
Window length	hrs	1				1 1 1		
Wet bulb temperature	deg F	72.7				1		
Dry bulb temperature	deg F	80.4						
Barometric pressure	psia	14.7						
Relative humidity	%	69.4						
Inlet (hot) water temperature	degF	117.7						
Outlet (cold) water temperature	deg F	91.5						
Range MDCT only- Fan Driver Power (test)	deg F bhp	26.2 #N/A	-					
IDCT ONLY-Fan Driver Powr (design)	bhp	#N/A						
Design Water Flov Rate	gpm	726750.000						
Circ water flow rate (test)	gpm	712154.8						
Predicted Circ Water Flow	gpm	753314.8						
Tower Capability (Q)	%	94.54						
	-			•	-(1)			
						************	Andrea 🔪 🔥	
				TWb A				Measured perature of Ho
				TOL AND	~ 11	N. N. N. M.	A A A water	and the second
				Tdp	- Copin I			Nate
				RH		Pump	$- \bigcirc \longrightarrow$	Nare
	-				<u> </u>	PRIME		
					62694 7			
			METTO	WER				
							Measured	
	-	-				-TO	emperature of Cold water	
								-
23							Exelon Gen	erati

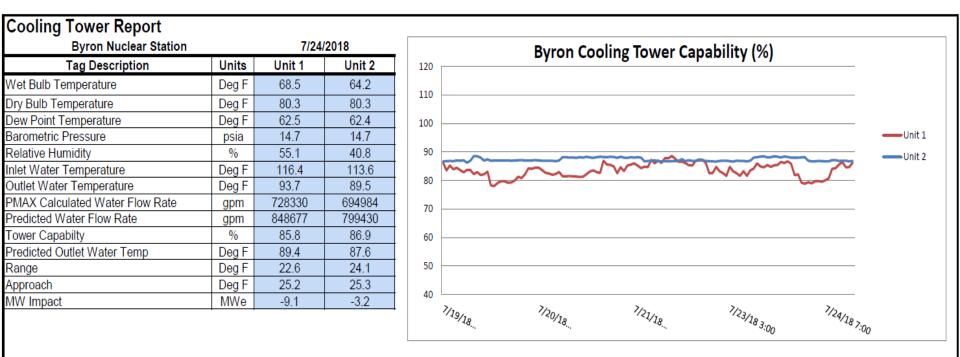
PMAX Real-Time Cooling Tower Performance Displays (web based)

Exelon Real-Time Cooling Tower Performance Display

24-JUL-18 BAD 16	Health			Co	oling	Towe	r		Gross MW	1235	.1 Best A	chievable (M)	N) 1238	. 2 Delta (MW)	-3.1
15:13:46 IVM 4	Alarm O				Nuclear S						Therma	al Power (MWt	h) 3641	. 5 (%)	99.9
Lost MW Plant Steam Advisor Overview Generator	HP Turbine LP A LP B LP C MSRs Cond	ensers Tower	FWH HP LP	umps Generator	Cycle Isolation	Manual Inputs	What If?	Site Reports	PdP	Rules	BYR2	Unit Compare	Exelon		
	Ambient Conditions		Ground	Met Tower	1										
	Pressure	psia	14.7												
	Pressure	in. hg	29.9		-		-				-	1			
	Temperature	٩F	80.6	80.4											
	Relative Humidity	%	55.1												
	Wet Bulb Temperature	٩F	68.8												
	Dew Point Temperature	٩F	62.8	62.8R	j										
	Wind		@ 30 Feet	@ 250 Feet	1										
	Speed	mph	9	11											
	Direction	deg	322												
	Cooling Tower Performance		Value												
	Hot Water Temperature	٩F	116.4			6	1					A			
	Cold Water Temperature	٩F	93.6		N		AND NO					NY.			
	Cooling Tower Range	٥F	22.6				and and a second	217	75 75	-15-75	T	D			
	Cooling Tower Approach	٥F	24.8		E		_				X				
	Circ Water Flow	GPM	727628												
	Circ Water Flow (predicted)	GPM	841476							Actual	Expect				
	Capability	%	86.5			Bas	in Temp		٩F	93.6	89.6	4.1			
	90.0 85.0 86.0 84.0 82.0 80.0 90.0	121 - %)	12:00	M M M M M M M M M M M M M M M M M M M	22	/ M			07/24/201 07/24/201			Archive Rate Update Rate:		inutes inutes	
												Exe	elon (Genera	tion。

Exelon Real-Time Condenser Performance Display

4-JUL-18 BAD 15	Health	5					C	onder	isers			Gross M\	N 123	4.8 Best	Achievable	(MW)	1238.0 D	elta (MW)	-3.
15:27:29 IVM 4	Alarm (Ó					Byron	Nuclear S			Thermal Power (MWth) 3643.3			(%) 100	100.				
ost MW Plant Steam Advisor Overview Generato	HP Turbin	MSRc	Condenser	rs ~	FWH HP LP	Pumps	Generator	Cycle Isolation	Manual Inputs	What If?	Site Reports	PdP	Rules	BYR2	Unit Compare	Exelo	n		
irc Water Conditions	Cond A	Cond B	Cond C			Steam Con		Con		Cond B	Cond C			A BP (Actual) 3.27	A B	P (Expected)	3.29	
inlet Temp (°F)	93.7	101.6	108.8	CWP OC	05 -	Flow (mlb/	-	2.7		2.77	2.78		6.0						
outlet Temp (°F)	102.5	110.8	116.3	<u> </u>		Pressure (i		3.2		3.86	4.50								
emp Rise (°F)	8.0	7.4	7.4	CW Flow Norma		Hood Temp) (°F)	119	.6	122.2	131.3		4.0						
ow (mlb/hr)	357.1	357.1	357.1	Norma		Hood Press	; (in hga)	3.4	1	3.66	4.69		4.0						
low (kgpm)	718.9	718.9	718.9			Condenser	Drain Inlet	Con	IA (Cond B	Cond C								
low (kgpm)*	729.2	729.2	729.2			Flow (mlb/	hr)	1.0	4	4.63	8.28		2.0 -						
irc Water Conditions	Wbox A	Wbox B	Wbox C	Wbox D		Enthalpy (E	Btu/lb)	317	.0	94.64	97.1								
Vaterbox DT (°F)	21.2	20.1	24.7	24.6		Back Press	ure (in hga)) Aver	age Ex	xpected	MW Effect		0.0	3:30	14:00		14:30	15:00	
erformance Indices	Cond A	Cond B	Cond C			Condenser	Performan	ce 3.	9	3.9	-0.28								
leat Duty (MBtu/hr)	2858.0	2624.8	2611.6		Hot	well Level	s (inches)	-			CANNE -								
leat Duty (MBtu/hr)*	2892.4	2670.2	2672.1		100	- ררי	2202							BP (Actual) 3.86	BB	P (Expected)	3.87	
HTC (Btu/hr-°F-ft)	384.6	418.9	412.5		80 60)- -		_					6.0						
TTD (°F)	16.5	15.3	13.7		40 20)- -		=			R								
*Power Method					0						1	18	4.0 -						
Cleanliness Factor	Actual	Expected	Δ		L	16.31 2	2.45				- C.M.								
Condenser A	0.94	0.903	0.04			Air In Leak	Indicators		Cation	Sp	pecific		2.0 _						
Condenser B	0.92	0.903	0.02			Conductivit	ty (umhos)		23.99	1	0.18								
Condenser C	0.92	0.903	0.01			Dissolved (J2 (%)		23.24				0.0						
Subcooling (°F)	Actual	Expected	Δ	MW Effect		Total CW F	low	А	ctual	Design				3:30	14:00		14:30	15:00	
Condenser	0.0	0.0J	0.0	0.0		Flow (kgpm	n)	7	18.9	741.0									
Con	denser Sub	Cooling					Ger	eration	vs ABF	Actual (MW) Expecte	d (MW)		C BP (Actual) 4.50	св	P (Expected)	4.52	-
0					1,	,280 -							Ø		, I				_
10.0													6.0						
					Output (MW)	,260 -							-						
					Itpul								4.0 -						
5.0 -					0 1,	,240 -													
					dLoss 1,								2.0 -						
					- 1,	,220	0.5	2.0 2.5	3.0	3.5 A.S	0 45 6	.0							
0.0						0.5 1	0 1.5				A- 9		0.0						
13:30 14	4:00	14:30	15:00					Listwall	PSAT (in	hee)				3:30	14:00		14:30	15:00	


Exelon Generation.

Sample Cooling Tower Performance Trend – Approach and Range

Sample Cooling Tower Performance Weekly Report

Exelon Cooling Tower Thermal Performance Overview

Results :

- Excel spreadsheets and PMAX models were reviewed and updated as needed
- Side by side comparison was made between spreadsheets and PMAX using the same input data
- Deltas identified between PMAX and spreadsheets and modifications made as needed to ensure accuracy in the PMAX including instrument validation
 - CW flow interpolation issue found and resolved

Benefits:

- Will allow M&D center to trend realtime cooling tower performance reliably using web based displays and utilities
- PMAX will also monitor long term performance (archived results), which facilitates maintenance decisions
- Excel sheet will be replaced using PMAX
 - PMAX uses real-time data and validates input
 - PMAX has a more accurate methodology for calculating flow

Conclusion

- Cooling tower performance results are calculated and presented in real-time
- Instruments can be validated before entering performance calculations
- Cooling tower performance calculation inputs and results are archived and available for trends, reports (automated and manual), alarm checks, and diagnostics
- Web based displays presenting cooling tower performance information are available to all users within the utility to assist with quickly finding thermal performance issues quickly

Questions?

