

HP/IP Turbine Replacement Analysis Using PEPSE Update 1

Bill Kettenacker, PE Scientech

2009 Scientech Symposium Managing and Improving Plant Performance January 14-16, 2009

Update

This paper is an update to the one given at the last Symposium in 2007. It has been updated to reflect new analyses that were performed subsequent to the last paper. This updated paper appears as an article in the August, 2008 issue of *Power* Engineering.

The Company

- Large US-based Electric Utility
- Mix of Fossil and Nuclear
- Fossil is Primarily Coal
- Spread Over Several States

The Station

- Multi-Unit Station
- Unit "X" 310 MW
- Sub-critical, coal-fired
- 2415 psi, 1050°F/1000°F, 1.9x10⁶ lb/hr
- Original GE turbines
- On-line in early 1970's

The Problem

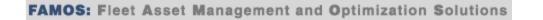
- Considering HP Turbine and IP Turbine Replacement
- Will Turbines Perform as Proposed?
- What Will the Real Plant Performance Be after Replacement?
- Will the Turbine Replacement Pay for Itself in a Reasonable Time?

Considerations


- What does the utility get from the vendor?
 - A heat balance diagram
 - A guarantee
- Utility must prove non-guarantee.
- What if the turbines fail guarantee?
 - Utility gets a penalty payment
 - Utility must live with it

The Solution

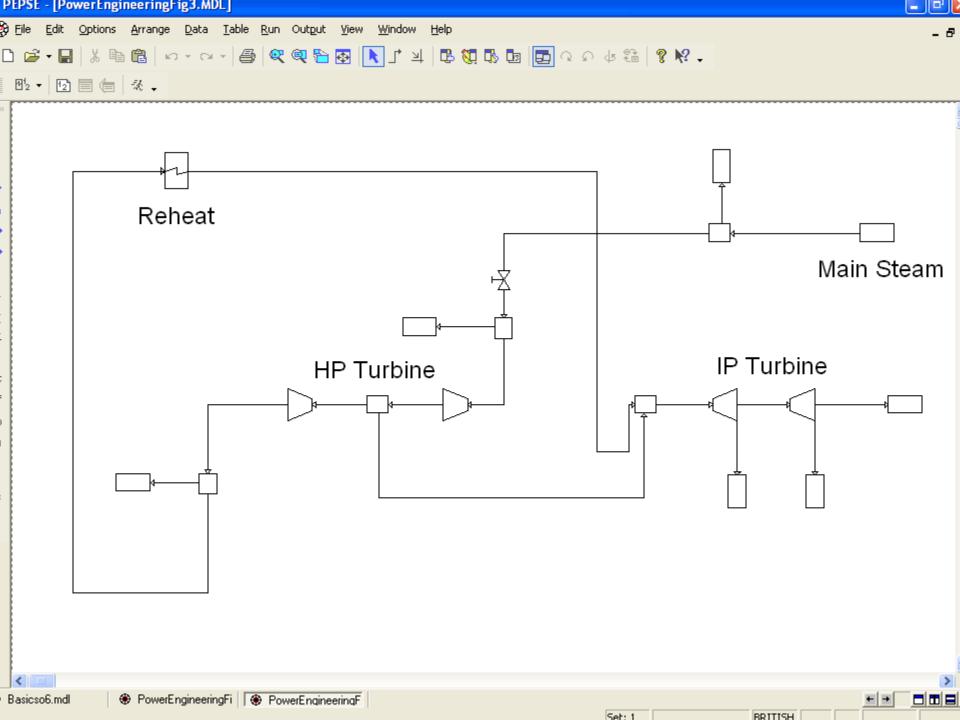
- Proposals from 2 Vendors
 - Vendor X
 - Vendor Y
- Also Look at Overhaul Instead of Replacement
- Analysis using **PEPSE**®
 - Turbine and boiler models
 - Special Option 11 application

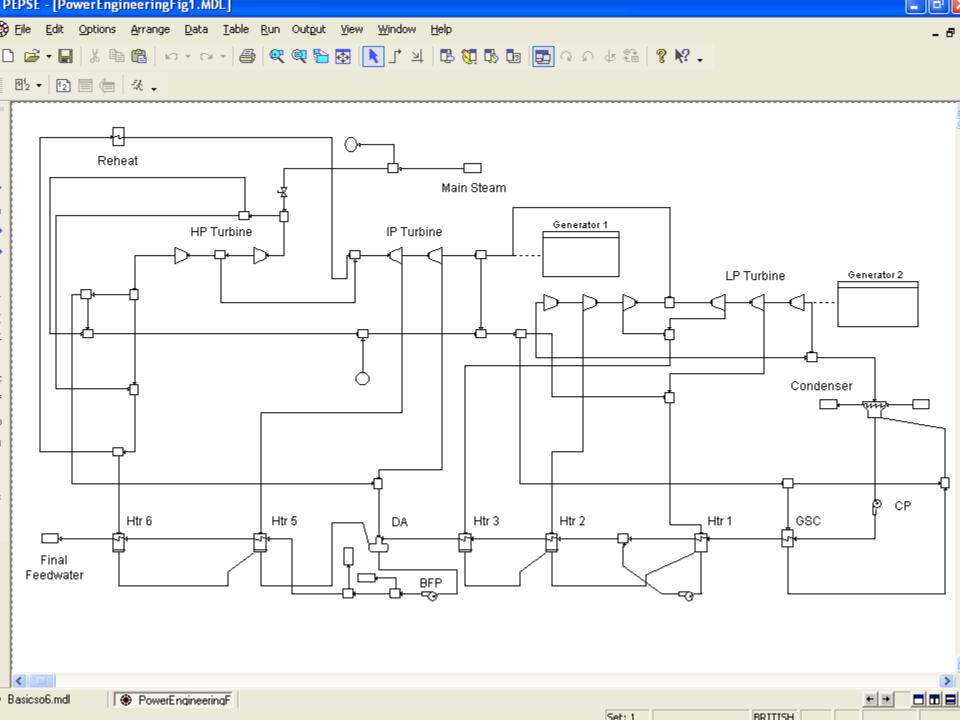

PEPSE[®]

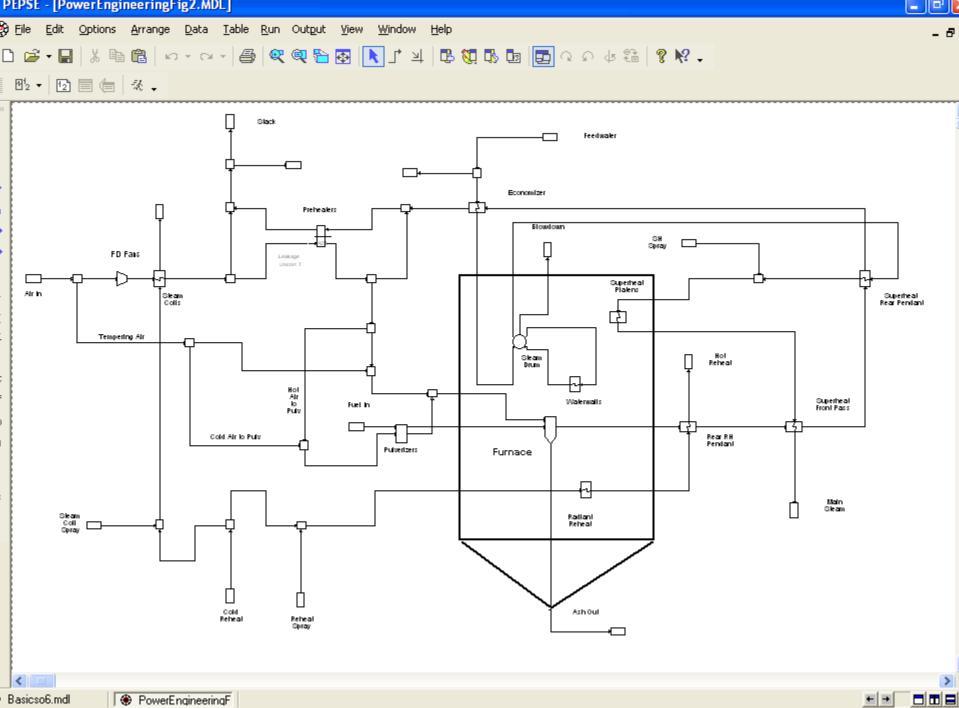
- Steady-state energy balance program
- Simulation model built from comp library
- Windows[®]-based drag and drop
- Fossil, nuclear, gas turbines, combined cycles, any fluid system
- 100's of PEPSE[®] customers representing
 1000's of users world-wide

Solution Method

- 1. Use The Utility's Existing PEPSE Turbine and Boiler Models
- 2. Check (and Modify if Necessary) the Models Against Current Design
- 3. Tune the Models to Actual Plant Data
- Using Vendor X's and Y's Proposed HP/IP Turbine Replacement Heat Balances, Develop Submodels of HP and IP Turbines and Tune the Turbines






Solution Method (continued)

- 5. Put Tuned Results Back into Main Model
- 6. Run "New" Turbine Model and Boiler Model Together Using Special Option 11
- 7. Repeat Step(6) Using "Re-Built" HP and IP Turbines by Assuming an Efficiency

Results – Turbine Changes Only

	Current	OEM	OEM	Rebuilt	
	Operation	1	2	HP/IP	
HP Turbine Power, MW	86.2	92.6	93.8	89.3	
IP Turbine Power, MW	78.8	82.8	82.3	79.8	
LP turbine Power, MW	146.0	141.5	141.0	144.1	
Total Gross Generation, MW	306.5	312.4	312.6	308.7	
Plant Heat Rate, BTU/kW-hr	9104	8935	8930	9042	

Results

- Both Vendor's Results Almost Identical for New HP and IP Performance
- LP Turbine "Energy-Starved"
- Results Show Little Overall Improvement with New Turbines
- Inconclusive

What To Do Next?

0.0.0.0

- Keep the Project Alive
- What is Needed?
 - Net ~7-8 MW
 - Net ~200-225 BTU/kW-hr
- What to Do?

Solution Method - New

Add Boiler Surface Area (5% - 25%) to Increase Heat to Turbine Cycle

- Superheat
- Reheat
- Economizer

Results – Turbine + Boiler Changes, OEM-1

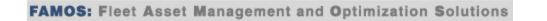
	Turb	RH	SSH	PSH	Econ
	Only	+10%	+10%	+10%	+10%
HP Turbine Power, MW	92.6	91.8	92.8	93.3	93.0
IP Turbine Power, MW	82.8	83.0	82.7	82.9	83.0
LP turbine Power, MW	141.5	141.9	141.4	141.7	141.9
Total Gross Generation, MW	312.4	312.1	312.4	313.2	313.3
Plant Heat Rate, BTU/kW-hr	8935	8941	8934	8911	8907

Results – Turbine + Boiler Changes, OEM-2

	Turb	RH	SSH	PSH	Econ
	Only	+10%	+10%	+10%	+10%
HP Turbine Power, MW	93.8	93.0	94.0	94.5	94.2
IP Turbine Power, MW	82.3	82.6	82.3	82.5	82.6
LP turbine Power, MW	141.0	141.5	141.0	141.3	141.5
Total Gross Generation, MW	312.6	312.6	312.8	313.7	313.7
Plant Heat Rate, BTU/kW-hr	8930	8929	8921	8900	8896

Results – Turbine + Boiler Changes, OEM-1

Temp Control	Turb	RH	SSH	PSH	Econ
	Only	+10%	+10%	+10%	+10%
HP Turbine Power, MW	93.4	93.5	93.8	93.5	93.8
IP Turbine Power, MW	84.1	84.3	84.1	84.1	84.1
LP turbine Power, MW	143.6	143.9	143.6	143.7	143.7
Total Gross Generation, MW	316.4	317.0	316.8	316.7	316.9
Plant Heat Rate, BTU/kW-hr	8910	8897	8897	8898	8890



Results

- Additional Boiler Surface Area Did Not Sway the Results
- Rebuilt HP/IP ~\$1.5M
- New Turbines ~\$12M
- Rebuild Instead of New
- No New Boiler Surface

Conclusions

- PEPSE[®] Is An Efficient Tool for Power Plant Analysis Studies
- Spending a Little Up-Front Can Save a Bundle Down the Road

