
2009 Symposium Conference

January 13-16, 2009

Optimizing for the Lowest Cost Electrical Production Using Advanced Monitoring Solutions

Tough Times Call for Technology Solutions

- Effective use of <u>technology is critical for the success</u> of competitive electric power generation.
- ➤ This Presentation will bring together some thermal performance <u>business drivers</u> that the market demands and the <u>advanced technologies</u> that will <u>satisfy those</u> <u>needs</u>.
- This interchange is <u>critical to the success</u>, and maybe <u>survival</u>, of each of our companies.

Thermal Performance Technology Solutions

- Off-Line 1st Principle thermal analysis modeling applications
- On-Line 1st Principle thermal performance monitoring applications
- Advanced Pattern Recognition applications for Equipment Reliability
- > Integrated Condition Monitoring applications

Heat Rate Improvement - A Business Case Defined

Power Plant Competitive Issues

- ➤ The Tall Poles under the Tent": environmental, fuel costs, capacity factor and capital investments
- Current conditions favor low-cost producers with strong balance sheets
- ➤ The Fuel Cost Pole: Heat Rate (HR) is a major driver of fuel costs

Filling.

The Fuel Cost Pole

- HR improvement program is more than routine engineering calculations.
- > Profitable utilities must have a mandatory HR strategy for sustainable profits and survival, i.e., executive sponsorship.
- ➤ Fuel costs: ~ 250% increase in last year's coal prices.
- Fuel represents 77- 93% of electrical production costs (depending on fuel type and transportation costs).
- HR awareness and optimization is critical to competitive operations.
- Being available isn't good enough any longer!

Heat Rate Improvement Program – Establishing the Business Case

- > HR Program: Attitudes and empowerment with pragmatic procedures
 - Executive sponsorship
 - Continuous HR improvement program
 - Engineering, operations & maintenance
 - Technology focused at HR improvement
- ➤ Engineering analysis: PEPSE Off-Line HR assessments (establishing "as-is" and "to-be")
- ➤ Situation appraisal: Establishing the current baseline ("as-is")
 - 1st principles modeling: thermal kit & acceptance tests
 - Thermal kit: design basis plus changes
 - Acceptance tests: "as-is" condition
 - Tuning to recent HR tests
- Establishing the most accurate, best achievable ("to-be") condition

Heat Rate Improvement Program – Establishing the Business Case (Cont'd)

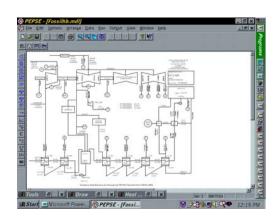
- > Developing a HR improvement program with a business case: i.e., the "Gap" ("as-is" vs. "to-be)
 - Establishing credible HR improvement work processes
 - On-Line monitoring to "best achievable" goals
 - Cost-effective capital investment projects (options)
- > PMAX On-Line monitoring characteristics
 - Comprehensive, on-line HR monitoring application, validated over 25 years of use for heat rate improvement
 - Diagnostics for operations and maintenance
 - Data validation for results integrity
 - Web-based User Interface
 - Utilize PEPSE's link for the most accurate, best achievable set points for HR and performance monitoring

Transforming plant data into business value - "It's all about the model."

▶PEPSE technology and modeling: Off-Line thermal performance analysis

- 1st Principles modeling for design or test modes
- Detail, thermal-hydraulic component modules (100s of modules)
- "What-If" studies: Predictive evaluation of plant modifications, operation changes, and variance analysis
- Automated test data reduction
- Module validation in over 30 years of use by utilities, A/E's and consulting engineers documented with published technical papers
- Drag and drop modeling features
- Comprehensive thermal-cycle process capability (fossil and nuclear steam, gas turbine, combined cycle, cogeneration, alternate energy)
- Utilizes recognized professional standards

▶ Engineering services to analyze HR performance: Use Domain knowledge of Subject Matter Experts


- Perform off-line plant degradation studies and detailed analysis of boilers and turbine cycles, i.e., HR evaluation of complete thermal process cycle
- Establishing realistic HR Curves, e.g., HR Kit Changes
- Tune model to acceptance test data or other suitable operational data
- Dynamic power level performance calculations
- Evaluation of new or modified plant components
- Incremental heat rate reduction studies

▶PEPSE is a proven, off-line, thermal performance analysis application

- Analyze power cycle process efficiencies
- Determines best achievable set points for on-line monitoring
- Case histories: Numerous case histories documenting success of PEPSE in modeling and solving HR issues
- See: http://pepse.scientech.us/papers.html
- Used by all major AE firms for HR analysis

The Business Case Results

Financial payback achieved with the PEPSE application using most accurate set points

- On a 500 MW unit, 1% heat rate improvement >/= \$1.5M/yr in fuel savings
- > Examples of heat rate improvements
 - o Reduced sprays: 0.5 2%
 - o Condenser cleanliness: 1 2%
 - o Feedwater level control: 0.5 1%
 - o Boiler exit gas temperature (soootblowing): 0.5 3%
 - o Aux steam extraction usage: 1 5%
 - Turbine outage tracking: 1 5%

Before & After

Technology may have changed history

1 1 1 1 1 1 1 1

Conclusions

- There is a business case for implementing advanced technology to improve HR and reduce operating and maintenance costs.
 - Requires a formal HR program with executive sponsorship.
 - Requires a mature, detailed, 1st Principles, off-line modeling/analysis application in conjunction with an advanced on-line monitoring application.
 - Requires engineering expertise to analyze existing component and system boundary conditions thus allowing definition of key performance parameters and process set-point optimization for monitoring and control.
 - Requires daily monitoring and diagnostics.
 - Payback may be within 6-12 months in the implementation of these advanced technologies.

1111111

Conclusions (Cont'd)

- There has never been a better time for implementing advanced technology.
 - Less frenetic times to accelerate technology innovation.
 - Empower People: Allows staff to learn, test and move up the learning curve.
 - Implementing new systems requires an investment of personnel resources and capital to realize an ROI.
 - Select the right innovation partners to achieve competitive objectives.

Our Commitment

- Scientech will partner in your technology and personnel investments to provide: <u>a profound</u> <u>value for your business success</u> during these times of economic downturn.
 - FAMOS Suite of Solutions
 - > 25 years of power plant performance services
- Now is the time to rethink performance HR improvement technology strategies.

Questions & Answers

