PEPSE® On The PVNGS SUN Network

Ken Porter
Frank Todd

Arizona Public Service Company

PEPSE ON THE PVNGS SUN NETWORK

Ken Porter
Senior Performance Engineer
Palo Verde Nuclear Generating Station
Arizona Public Service

Frank Todd
Performance Engineer
Palo Verde Nuclear Generating Station
Arizona Public Service

ABSTRACT

The goal of Arizona Public Service Company is to be one of the top five electric utility
providers by 1995. A key component in the fulfilling of this goal is maintaining the highest
Capability Factor for the three 1340 MWe (gross) Units at Palo Verde Nuclear
Generating Station (PVNGS). In order to fulfill this goal, timely technical support must be
provided to the Operations Department.

In 1989, PVNGS Engineering Management decided to purchase a Unix based
networked computer system. As a result, data organization and availability have been
greatly improved and various analysis tools are available to the Performance Engineer.
One of the central analysis tools used by the Performance Engineer is the PEPSE
performance code. The goal of more timely and efficient analysis was hampered by
having to transfer data from a Unix system to a MS-DOS computer to perform the
required analysis. Therefore, it was decided to move (port) the PEPSE code to the Sun
Unix Network.

The purpose of this paper is to expose other performance engineers to a new
technology and aid those who want to use PEPSE on a Unix based system.This paper
describes the advantages of using the Sun network for thermal performance analysis
and the methods used to port the PEPSE code from a personal computer MS-DOS
operating system to the Unix operating system on the Sun network.

Acknowledgments

The following individuals also deserve to be mentioned for their effort to this project.
Don Hildebrant of United Energy Services made most of the changes to the source code
and did most of the compiling and testing. Without the dedicated effort of Don this project
would not have been possible. Jerome Lamer of Arizona Public Service wrote the C
routines required for getting the PEPSE output to a window (screen). The support of Ron
Griebenow, Greg Rice and Gene Minner of Haliburton-NUS was also very helpful and
greatly appreciated. And finally, the editorial and technical work of Jodi Colvilie of
Arizona Public Service was crucial to the completion this paper.

Introduction

In 1991 the PEPSE code was ported from a MS-DOS platform to a Unix based
platform. While most of the changes were relatively simple and tedious some required a
lot of thought and effort. One of the purposes of this paper is to provide lessons learned
for other utilities who may be considering porting PEPSE to a Unix environment. It is
hoped that these lessons will enable other utilities to spend less time and money in the
conversion process.

Once PEPSE was ported to a Unix environment, the advantages of using PEPSE in a
multi-tasking and LAN environment became evident. For example, PEPSE input decks
are able to be created without moving the data between a personal computer and a
workstation. Also, PEPSE input and output decks can now be accessed by multiple
users at different workstations. And finally, there has been a significant reduction in the
run time of the Palo Verde modei.

The Man-Machine Interface and the PEPSE Interactive Processor (PIP) feature were
not ported to Unix because of the extra time and effort required to convert these features
to the Unix environment.

Description and History of Palo Verde

Palo Verde is a triple-unit standardized nuclear energy facility located 55 miles west
of Phoenix, and generates electricity for approximately 4,000,000 peopie in four states;
Arizona, New Mexico, Texas and California. Each of the project’s three reactors have the
capacity to generate 1,270 net megawatts of electricity, making it the second largest
nuclear generating station in the world. Unit 1 began commercial service in March 1986.
Unit 2 began commercial service in September 1986, and Unit 3 began commercial
operation in January 1988.

Each unit consists of a Combustion Engineering System 80 Nuclear Steam Supply
System, a General Electric N2 Turbine-Generator, four moisture separator reheaters with
two stages of reheat, two General Electric feedwater pump turbines coupled to two
Byron-Jackson feedwater pumps, a multipressure condenser, seven stages of feedwater
heating, and three Marley forced draft, round, concrete cooling towers.

Palo Verde is unique because its the only nuclear energy facility in the world that
uses treated sewage effluent for cooling water. Palo Verde buys wastewater from local
cities in the Phoenix metropolitan area and recycles it at the PVNGS Water Reclamation
Facility. Treated sewage effluent is pumped from the 80 acre storage reservoir to the
cooling towers to replace water that has been lost due to evaporation. Reuse of
wastewater is both environmentally sound and a substantial economic benefit for nearby
communities.

4-1

Description of the Thermal Performance Group

The Thermal Performance group at Palo Verde is located on-site and is part of the
Reactor Engineering group. Two engineers and two technicians work full time on
performance issues including supplying the data needed for the NRC Monthly Operating
Report and the INPO Performance Indicators.

There is no data link between the Plant Monitoring System (PMS) computer and the
Sun Engineering LAN. Data is collected daily from the plant computer in each of the unit
control rooms and put on magnetic tape. The data is transferred to a 5.25 floppy disk,
brought down to the office, transferred to a 3.5 disk and then uploaded to the LAN. Other
sources of data are hard copy of hourly logs produced by the PMS computer and
operator logs.

ASME testing or other testing is not performed due to a lack of resources. However,
the plant is well instrumented and most of the instrumentation is in good condition.
Therefore, all performance monitoring is done with data from permanent plant
equipment.

Description of the Sun Local Area Network

The purpose of the PVNGS Sun Local Area Network is to provide distributed
resources and enough power to the users’ enabling them to perform complicated analysis
and compute intensive functions. The concept of a network of various workstations which
can share resources and provide various levels of computing ability was developed to
meet the needs of the PVNGS Engineering organization.

The workstations are served by several “servers”. A server is a computer (usually
more powerful than a work station) which keeps track of all system files and application
programs. Many types of computers have been connected to the LAN. We have installed
Sun SPARC +1 stations, IBM PS2s, generic IBM clones, Compac computers, Sun 386i’s,
diskless Sun stations called SLC’s, and even some Apple computers. The system
provides for versatility.

Generally, a workstation is a computer that has enough disk space, memory, and
central processor to perform all the required operating system functions. Sometimes
applications may be tightly bound to a particular workstation, however, most of the
application programs reside on the servers and the workstations just use them.
Workstations are also used to host a printer or some other peripheral device such as a
scanner. Although not normally configured as such, workstations can operate on a stand-
alone basis. Workstations are also used as servers in certain situations. The workstations
have at least a 104 megabyte hard drive and a minimum of 8 megabytes of random
access memory.

4-2

PVNGS uses the open system concept. Workstations are not bound to a single user
or even to a user being at the workstation. Most workstations can be accessed freely
through the network meaning any person with an account can access their files from any
workstation. This homogenous system contributes to a system that is very flexible.

The servers used on the PVNGS LAN are Sun 4/490 computers although some are
SparcServers (usually a SPARC 2). The server provides disk space for applications, user
directories, and common data areas. Mass storage devices such as tape drives and CD
ROM devices are attached to the servers. Networking devices such as gateways to the
mainframe computer, modems and fiber optics are also attached to the servers. All the
data files that define the Network configuration are located on the servers, therefore, the
server provides the computing resources to run the processes that control the network.
One disadvantage is that if a server fails or is taken out of service part of the network may
stop working.

There are many peculiar terms that are used to define how the network is controlled:
TCP/IP; Network Databases, NIS; NFS; Automounting and Daesmons. Generally speaking
all these terms refer to the way in which a user on the system is able to access and utilize
all the resources of the system. What is intended here is a general overview of how the
system works:

TCP/IP - Transmission Control Protocol and the Internet Protocol. Each node (or host)
on the network has a unique Internet address defined by the Ethernet controller chips on
the central processing unit chip or the Ethernet controller board. Therefore the TCP/IP
defines the location of every device.

Network Databases- Network Databases define the network to the computer. They are
simply flat ASCII files (a readable list of information).

NIS - Name Information Service (or Yellow Pages)- This is a central method of keeping
track of all the Network Databases on all the nodes without having to update all the nodes
for every change to the configuration.

NFS - Network File System- This is the Sun interpretation and implementation of the
distributed file system concept. Different computer systems use one form of NFS or
another. This is how you can have many different file systems on various resources yet
be able to have access to all those file systems and resources.

Automounting- The process of automounting allows the user to log on to any
workstation without having to be aware of where their data and applications reside. When
a host (workstation) is idle it has no NFS directories mounted. When a user logs in, the
home directory is required, so it is automounted. As the user accesses applications and
other common data areas, those resources are automounted. When a resource has not
been used for a certain amount of time, it is unmounted.

4-3

Unix Networks do require a large amount of overhead to maintain. As can be seen
from Figure 1, the Arizona Public Service Network is fairly large with links into many types
of computer systems. The company has made a commitment to the concept of distributed
information and application systems. The advantages of using Local Area Networks can
be realized without such a complicated and encompassing implementation. Local Area
Networks can be implemented much simpler in smaller applications.

The thermal performance area on the Local Area Network consists of a set of
subdirectories that contain all the specific application programs and data files for the
Thermal Performance group. A separate menu system was developed so that most of the
application programs are available by way of a menu pick with a mouse. Unix provides
intrinsic file security so that anyone connected to the Local Area Network can access the
data without having the ability to alter the original files. All the application programs are
also available for anyone on the LAN to use.

The Workstation

e Contains an individual copy of the Oper-
ating System

* Provides memory and a processor for lo-
cal execution of all processes

* Provides ‘swap space’ locally

* May host a printer, and provide a ‘spool-
ing area’ for that printer

* Some applications are tightly bound to a
particular workstation. Those worksta-
tions house the configuration files that
are necessary for those applications to
run. An example of such an application is
DOS Windows.

4-4

VHdV NVLITOdOY LI XHd INVId 49MO0d HTIHA OTvd

IILQHM —— ——

a9 ¢y
— IOAJOS UNS SUQ — suonels ¢ —
| o |
uoiom E_m
— 1 B] IOH.HU —
— suonels 091 £ Jury
uno)) sso1) —_—
— = % - : >m
SISAIDS UNG UIAIS

— — — N - - ﬁ
rlllll|wﬂﬁvﬁ5m TRU [— - - N — saoneIs ¢ —

— 004 WSPOIA

_ 29 IOpUSJA(J mmw.w.__u__.__ III_
L

— 10je[nuLO] —
O oresxa _ _ =
) ung Ove
ISOM SN1/SAV ‘Anuno) _ [111 _
—_— - — ssol)) _ goImg fresd —
|||||| [eLIdS |

Il || oo |
==== 3eL®sng _ 06EE Ve 06ce T _ _ ¥S1q 99 91 _

SIPAIRS UNg INOJ
— — am— puyly
xs1dwo) urupy

1) e dio)

:ANAOTT weISeiq NVA ung

Figure 1

4-5

JPIdA OTe] Je saurpfmg xa[duwo))
uogensMIIpy MaN a3 10§ dneg N1 Ad

2

igure

F

4-6

Use of Local Area Networks in Performance Analysis

One of the major motivations for porting the PEPSE code to the PVNGS Sun Local
Area Network was the ability to create an integrated analysis system. PVNGS has an
abundant amount of installed plant instrumentation so a large quantity of data is
available to the thermal performance engineer. If this data is not organized or if the tools
are not available to analyze the data, then the data is useless to the thermal performance
engineer. The PVNGS Thermal Performance group is utilizing the many organizational
advantages of the Unix operating system on a Local Area Network and applying the
various analysis tools to form an integrated method of monitoring and analyzing thermal
performance of the three units at the plant.

Files are maintained for each fuel cycle for each unit and can be easily accessed to
help in plant analysis. Graphs can be quickly obtained for any of the performance
parameters. Thermal performance data can be easily moved to other tools on the
PVNGS Sun Local Area Network for further analysis. Plant data can be put into a PEPSE
deck and analyzed in a manner of minutes. This allows for the rapid response to a
particular problem that a unit may be experiencing. At this time, PVNGS does not have a
computer link to the Plant Monitoring System and this is the weakest part of the program.

The key aspect of this versatility is the involvement of the thermal performance
engineer in the entire process. The system consists of easily accessible tools that a
thermal performance engineer can use. The system is not automated and the data is
accessible. By using a spreadsheet to store and organize the data it can be easily
manipulated for problems such as non-normal operating conditions, instruments out of
scan, or instruments which are reading incorrectly. Normally the plant computer performs
certain performance related calculations automatically in its balance of plant
performance calculation package. Often there is a problem with a particular instrument or
a calculation is not performed. In these cases, the calculations can be performed in the
spreadsheet using the raw data values. Thus a trend may continue whereas in the past it
may have been lost.

Another significant advantage to using Local Area Networks is the accessibility of the
data by anybody with access to the LAN. System engineers have easy access to the
data, but they can be restricted from altering the original data files. If a problem is
detected with a feedwater heater the performance engineer can call up the system
engineer and the two of them can look at the same data at the same time on different
workstations.

The PVNGS Sun Local Area Network provides access to many tools for the thermal
performance engineer. LOTUS 1-2-3 for Sun is the preferred spreadsheet. Another
spreadsheet package, WINGZ, is also available. The RS/1 statistical package is

4-7

Downloaded from tape drive

Data Snapshot taken from d transferred to fi disk
Plant Coxgputer and transterred to Hoppy dis

to be easily accessible to other
Data is brought back to office -
files are deloggged and personnel/departments.

uploaded onto database.

ey

Data is graphed and trended-
Sigma calculations are done.
Engmeermg analglsm is performed
on all abnormal findings. Engineering

calculations are also performed, as
well as PEPSE runs when needed.

Questions/inquiries are sometimes made
to other departments/system engineers,
in an effort to find the cause for the
abnormalities found.

Problem Identification and possible solutions/
2 suggestions are made.

Figure 3
4-8

available for statistical analysis when in-depth analysis is needed beyond what is
available in LOTUS 1-2-3. FRAMEMAKER is used for word processing and desktop
publishing. Other software tools are also available to perform flow calculations, heat
balance calculations, pump calculations, condenser calculations, and steam table
lookups. PEPSE can also be used in a much more interactive way. Two decks can be run
at the same time and then compared to each other side by side on the computer screen.
If needed, the entire deck can be put into a text editor or a section can be cut out and
added to an already existing document. Stacked PEPSE decks can be run and the
results graphed or analyzed very quickly.

Much of the data used in thermal performance comes from various sources;
procedures, plant logs, PMS snapshot data, etc. On a Local Area Network the data
analysis can use all these sources of data together. Comparisons can be made and
calculations using parts of all the data sources can be performed. Historical data can be
accessed very quickly to make comparisons.

The end result is that the thermal performance engineer can solve problems much
more efficiently and quickly by having all the data and all the tools available at the same
place. More time can be spent on thinking about a problem then on how to get at the
data or tools to solve a problem. This is a method that has been developed over many
years at PVNGS.

An area which has great potential for benefit is the integration of the application
programs. The output of PEPSE runs can be automatically input into other programs
such as data trending, statistical analysis, report generation or other engineering
analysis software.

Performance Gains

A significant gain in run time was achieved by porting PEPSE to the Sun SPARC
stations. Before discussing these gains, a description of the model will help put the run
times in perspective (see Figures 4 - 9). The standard model at Palo Verde has 167
components and 268 streams.The model contains four HP turbine stage groups, three
LP turbines with 6 stage groups per turbine, two HP heater trains with 3 heaters per train,
three LP turbine trains with 4 heaters per train, four MS/Rs with one stage of moisture
removal and two reheat stages. All of this adds up to 22 turbine stage groups, 6 HP
heaters and 12 LP heaters, four 2nd stage reheaters, four 1st stage reheaters and 4
moisture removal chevrons. In addition to this the model also contains two feedwater
pumps, two feedwater pump turbines, three condensate pumps, two extraction drain
pumps, six combined intercept valves, four main stop valves and three condensers. A
model of the steam generator blowdown system, including a flashtank and heat

4-9

(807 XIW)
wes]S pueln

V, 195USpUO) 0],
9 Jo 1 98eq
@ 2661 ‘LI UYoreN i "ASY
(822X (vez THAOW dSddd 409 SONAd
- H Xt
A A 8z I SNOLLOHS LA'INI % dH
m (¥7T XIW) (z€T XIW) (967 XIN)
| VS IH OL V9 IH oL VL TH oL
_ _ g5 % VS IH oL
cel 6¢C1 £71 saurgIny,
- R &E:%Hvoom ﬂﬁ%vmﬂﬁ
1 (B i1 q L
6€1 9€1 € [per L1 fyz1 a
A 'y 23
- q a 817 66¢
10z =71l sor ‘ B
Vi NﬁAmv) 611
o 3 1
oL o q
g hxgh - - -t - NI
e op1 | S M&Em Tc @ﬂﬁ 801 ["g11 | 90T ['czy o1 Tl ["901 | EO1 [qer | MY [por |01 [Zo1 |10} 1_ L66
q q q q
€el (5418 0tl €01
g Iy 815 pug €€l
ARSI @ .d, WSW of
g mpy 815 pug 501
.u.ﬁm\mﬁﬂ@ll O, WSW @@A,
815 15 1y 815 pug 1
O Ysh o,we .4, WSW oL
815 151 g 815 pug £01

¥, 4/S oL V., /SW oL

Figure 4

4-10

9 jo 7 a8eq

2661 ‘L) Yorew ¥ 'A%y
TAQOW dSddd dO9 SONAJ
SYAIVAHTI JOIVIVJAS TANLSION

€49 g

e

aém %uﬂm%

LST

VL BH %

ote
E#AID O

S# AID O

THAID N
TLT (44

BOI

S# AIO O

VL BH o3

amgny,
dH woy
ov
vet :_°
Bo-YeT
AD woy
96T\ 987 ¥6T SST
S
a1t
ps1
ol [z
vl
Lu
gyl

44!

Figure 5

4-11

umopmoigi 09

9 Jo ¢ a8eq ured
2661 ‘L1 Yrew i A9y OH d71
STAAON ASddd dOd SONAd

SANIINLdT® w.EUEN,

L91

T
9.1 141 @
D, WL

R4l ot
L (1

4-12

9 Jo ¥ 98eq
2661 ‘Ll Yorey ¥ "A9Yg
TAAOW ISddd dOF SONAJ

SANNd JELVM AT % _

SYHLVHH 1 ‘SdNNd HLVSNIANOD L&

§9T [R5 /7 < /7

Sop |34

q
avjaid dc} 9iH AR TR g dumg puc) g ﬂ
E)
161 19¢ s61 L61 %m@ w..@
@) =]
ggmxg L€

12c
® @

geaxg
: sz 957 LST 133
81¢ 4 : :

T [

SYRuIH StjdIH SThuIH OTAEIA
00 3 y0: 90
(x) vl () O,
ognxg ELE

e 997

9T

4-13

9 Jo G a8eq
2661 L1 YoreN b A9y
TAAOW dSddd dO€ SONAd

SINVL % SdANNd
NIVIQ NOLLDOVYLXH % SYALVAH dH

g, dung

' " | -

mo
& E EE

0LC

68C

0LT

89C

414
V< IH

‘|/_/‘

314

_wmﬁ
E 6L

Sel

+AC)
Hs oL

£LT dun

Ny

e s)
19T

4-14

Vi

017 dwop

930 9 98ed
2661 ‘L1 Yotey bt ASY
TAAOWN dSddd 409 SONAJ e
NMOMOTd DS
Josudpuo)) 0}
SLE
o) a
1z dwop ™
goxg rﬁ|@
uondns 01 1HQg | JLPpuo)woy
S
i1 a1 a
yeg dwop gz dwop 162 oo
Tior e SH Ve nH
g AR diol d1°L P
@ e Q 1o gg o1
69€
vLE X3
n
%06 %ES
OLE 0s1
ropndg e dolee
B uww S e Jum.__ s SBHJT0L g hontdg
A
gALWg VILWa sosuOpBO 0
BHOL nHoL
& © oot ‘@
6S€
1ig LOE]
%08 8Pl
A xs
D €0E i e €51
ad >
667

Figure 9

4-15

exchanger, was added to the Palo Verde model in 1991.

This model running in performance mode would take 22.9 seconds per iteration for a
total run time of 9 minutes and 25 seconds on a 386 type of computer running with a
clock speed of 16 megahertz. The same model runs five times faster on the SPARC
station 1+ at 4.3 seconds per iteration for a total run time of one minute and 48 seconds.
This doesn't include the efficiencies of having the data available on the LAN for anyone
who wants to see the results. It also assumes that during the time that PEPSE is running
on the SPARC station no other functions are being performed.

If two pepse models run at the same time on the same workstation the run time
doubles. Multiple PEPSE runs can be accomplished by running one model on one
workstation, another on a second workstation and a third on another workstation.
Windows can be opened to the other workstations so the operator can run all three from
one workstation.

Running models with this kind of speed tends to decrease the desirability of the
interrupt features to insert new values. When a model runs in just over one and one-half

minutes with four seconds per iteration the need to break in the programs to fix iteration
problems is diminished.

Table 1 is a comparison of the run times between the different computers running the
same input deck.

Advantages / Disadvantages

Advantages

1. Integrated System - With PEPSE on the LAN, data for PEPSE decks can be
directly transferred into a deck. Previously, PEPSE decks were put together on
the LAN, converted to a DOS ASCII format, transferred to a diskette, and
transferred onto a personal computer. The PEPSE output file would then be read
to a diskette and manually transferred to the engineering LAN for reference and
storage.

2. Performance gain - A significant reduction in the amount of time it takes to run a
PEPSE deck resulted from porting PEPSE to Unix. The section entitled
Performance Gains discusses these gains in detail.

3. Versatility gain- PEPSE can be used in conjunction with other application
programs on the Local Area Network.

Disadvantages

1. The Man-Machine Interface (MMI) was not ported to Unix. The performance

engineers at Palo Verde have been using PEPSE since 1985 and learned to use

4-16

Table 1: PEPSE RUN TIME COMPARISON

386 -16 MHz Computer Sun SPARC +1 Sun SPARC +1 Sun 490 Server
lteration Elapsed Time 1 job executing 2 jobs executing 1 job executing
Elapsed Time Elapsed Time Elapsed Time
Read 48 sec 10 sec 13 sec 6 sec
1 1 min 15 sec 17 sec 23 sec 8 sec
2 1 min 39 sec 21 sec 32 sec 11 sec
3 2 min 0 sec 25 sec 40 sec 13 sec
4 2 min 22 sec 29 sec 48 sec 15 sec
5 2 min 45 sec 34 sec 57 sec 17 sec
6 3 min 7 sec 39 sec 1 min 5 sec 19 sec
7 3 min 30 sec 42 sec 1 min 14 sec 21 sec
8 3 min 53 sec 46 sec 1 min 22 sec 23 sec
9 4 min 15 sec 50 sec 1 min 30 sec 25 sec
10 4 min 38sec 55 sec 1 min 39 sec 28 sec
11 5 min 1 sec 59 sec 1 min 48 sec 30 sec
12 5 min 24 sec 1 min 3 sec 1 min 56 sec 32 sec
13 5 min 47 sec 1 min 7 sec 2 min 5 sec 34 sec
14 6 min 9 sec 1 min 11 sec 2 min 14 sec 36 sec
15 6 min 32 sec Imin 16 sec 2 min 22 sec 38 sec
16 6 min 55 sec 1 min 20 sec 2 min 31 sec 40 sec
17 7 min 18 sec 1 min 24 sec 2 min 39 sec 42 sec
18 7 min 41 sec 1 min 28 sec 2 min 48 sec 44 sec
19 8 min 3 sec 1 min 33 sec 2 min 56 sec 46 sec
20 8 min 26 sec 1 min 37 sec 3 min 5 sec 48 sec
21 8 min 49 sec 1 min 41 sec 3 min 13 sec 50 sec
22 9 min 12 sec 1 min 45 sec 3 min 17 sec 52 sec
Write| 9 min 25 sec 1 min 48 sec 3 min 20 sec 53 sec

4-17

PEPSE before MMI was created. Consequently, they do not use MMI. Because of
this fact and the additional amount of time and money required to port MMI, a
decision was made not to port it to Unix. At Palo Verde this is not viewed as a
disadvantage. However, if a person has learned to use the MMI and works with it
regularly then the lack of MMl is a disadvantage.

2. The PEPSE Interactive Processor (PIP) was not adapted to the Unix system. PIP
has the ability to interrupt a PEPSE run and write the current resuits to an output
file or insert new values into PEPSE variables. The conversion of these features
to Unix requires that new subroutines be written in C to handle the interruption
and data input from the keyboard. This was beyond our technical capability at the
time and was not done. However, this disadvantage is minimal due to the
increased processing speed. The faster a model runs and converges the less
need and desire there is to interrupt it. If there is a need to use the PIP features,
they can be worked around by doing some pre-job planning. For example, if a
person wants to see the output at a particular iterate then the maximum number of
iterations can be changed to that iterate value before the job is run so it will stop at
the desired iteration.

3. The porting of PEPSE can be expensive if not controlled. One of the purposes of
this paper is to present lessons learned on porting PEPSE from a DOS platform to
a Unix platform in order to help other utilities reduce the cost of the conversion.

Description of Changes to the Source Code
Summary of Changes

Four types of changes were made to the PEPSE source code. The first type were
those that converted the code from a DOS format to a Unix format. The second type of
changes were those where a Fortran function in the PEPSE source code had to be
replaced with a similar function from Sun Fortran. The third type of changes were those
that wrote or read data directly into or from a memory location. And the fourth type of
changes were those that modified the way PEPSE wrote information to the computer
screen.

1. DOS to Unix Conversion - The carriage return character in DOS is read as a
control M in Unix. Each PEPSE source code file had to have all of its carriage
return characters converted to the Unix format by running a program called
DOS2UNIX.

Path names are written slightly differently in Unix. MS-DOS uses a backward
slash between sub-directory names. Unix uses a forward slash for the same
purpose. Consequently, all PEPSE source code files that contained path names

4-18

had to have all the back slashes (\) converted to forward slashes (/). Also, the path
names had to be changed to match the directory structure of the PVNGS Sun
LAN.

The default read and write file numbers #5 and #6 used with the READ and
WRITE commands were already in use by the Sun operating system. These
default file numbers were changed from #5 to #55 and #6 to #66 in all source files
that used READ and WRITE commands. In the Sun operating system file #5 is
normally reserved for the standard input (keyboard) and file #6 for the standard
output (screen).

2. Fortran Function Changes - Several functions used in the PEPSE source code did
not exist in the Sun version of Fortran and had to be replaced with similar
functions.

3. Memory Address Locator Routines - Unix handies its memory addresses
differently than DOS due to its multitasking capabilities. Consequently, several
sub-routines in PEPSE that read from or wrote directly to a memory address had
to be changed.

4. Screen Writing Routines - The screen writing routines used in DOS had to be
modified to work with the graphic user interface used on the SPARC workstations.
Also, the routines that checked the keyboard buffer to see if the user wanted to
interrupt the program and use the PEPSE Interactive Processor (PIP) had to be
rewritten in C in order to be compatible with the workstations. However, this task
was not fully completed and the current version of PEPSE running on the PVNGS
Sun LAN does not have the capability to use the PIP feature.

Code O izati { Si

Version 56 of the PEPSE code consists of one Fortran program, 391 Fortran sub-
routines and 91 Fortran “INCLUDE?” routines. Refer to the PEPSE Manual, Volume I,
under the Code Organization tab for more details on the organization of PEPSE. In
addition to the Fortran files, five C object files are used for detecting keyboard input and
screen writing. Locating and making changes in all these files as well as compiling the
files was a complicated task. Unix has some very powerful commands that can be used
to simplified this task.

grep - allows you to search one or more files for particular character patterns.
Is - lists the files in the present working directory (pwd)

more - prints a particular file to the screen

P 0D

wc - counts the number of words or lines in a file

5. vi - a basic line editor used in Unix which is useful for making simple changes
6. sed - a stream editor that is good for search and replace routines

7. make - recompiles only files that have been changed and need recompiling

Changes to the PEPSE Source Code
PEPPC.FOR changes

The file PEPPC.FOR is the actual program file. The rest of the source files are either
subroutines or INCLUDE routines. Extensive changes were made to this file and it was
renamed sunpep.f. The changes made to PEPPC.FOR are representative of the kinds
of changes required by the rest of the source code.

1. The default file numbers had to be changed to accommodate the fact that the
normal Fortran default files, #5 and #6 were already used by the Sun Unix
operating system. The default files were changed to #55 and #66. The following is
an example of these changes. The comment lines are the original source code.

IF (NOT. RESTRT)
C * OPEN(5, FILE=IN_TEMP, STATUS = 'OLD',

C * CARRIAGECONTROL = 'FORTRAN', ERR = 1400)
IF (NOT. RESTRT)

*

OPEN(55,FILE=IN_TEMP,FORM='PRINTER',STATUS='OLD',ERR=1400)

2. The screen control methods were changed to use C program application of the
curses routines verses the Fortran screen control methods. Five programs were
written to accomplish this task.

* clrwin -- clear window
« initwn -- initialize curses window (set up to read input without a "CR"
» readch -- read a character
» wrstr -- write a single character or string
* winend -- end curses window

The following is a program listing of the C routines.

clrwin.c:
#include <curses.h>

clrwin()

{

clear();

}

4-20

#include <curses.h>
initwn()

{

initser();

cbreak();

noecho();

nonl();

}

#include <curses.h>
winend()

{

endwin();

}

#include <curses.h>
wrchar(line, col, ch, length)
int *line;

int *col;

char *ch;

int *length;*

{

mvaddch(*line, *col, ch);
move(LINES-1, 0);
refresh();

}

#include <curses.h>
wrstr(line, col, str, length)
int *line;
int *col;
char *str;
int *length;
{
if (*length == 1)
{
mvaddch(*line, *col, str[0]);
}

else

4-21

{
mvaddstr(*line, *col, str);

}
move(LINES-1, 0);

refresh();
}
In general, the following changes must be made to the source code to allow the use

of these routines:

CHARACTER STRING*8 - Variable for strings to write to curses window
CHARACTER readch*1 - Used to read a single character
CHARACTER NCHAR*1 - Used in with readch to read a single char

EXTERNAL initwn !$pragma C(initwn) - Defines the C routines
EXTERNAL winend !$pragma C(winend)

EXTERNAL clrwin !$pragma C(clrwin)

EXTERNAL wrstr !$pragma C(wrstr)

The file readch is missing from the EXTERNAL list. It is defined by the two variables
above. This is because of the convoluted way you pass a string/character back to a
Fortran program. The following is some sample code.

CALL initwn() - Initialize the curses window
CALL clrwin() - Clear the window
LENGTH =0

CALL wrstr(LINE, COL, INPUT, LENGTH) - Writes a string to the curses
window where LINE is the line number and COL is the column and LENGTH
is set to 0. LENGTH is set to 1 if you wish to write a single character.

NCHAR = readch("*',1) read a single character from the curses window, no carriage
return required; readch returns a -1 if no character present.
LENGTH =1
CALL wrstr(LINE, COL, NCHAR, LENGTH) - Writes a single character
CALL winend() - Closes curses window
The following are the changes made to incorporate the C routines in the Fortran. The
comment line is the original code.
C INTEGER*2 RPMODE, RTSTAT, ICODE, NEXEQ, EXELIM
EXTERNAL initwn !$pragma C(initwn)
EXTERNAL clrwin !$pragma C(clrwin)
EXTERNAL winend !$pragma C(winend)

4-22

3. The Unix operating system uses the forward slash (/) rather than the back slash (\)
to define a path. Therefore, all references to files and their paths had to be put in
the proper format. Unix is also case sensitive and this must be taken into account
when referencing files or making calls. The following two statements are
interpreted differently by Unix.

INCLUDE 'home/perfdata/perfprgm/pepse/inc/parms.for’

INCLUDE 'home/perfdata/perfprgm/pepse/inc/PARMS.FOR'
Due to the case sensitivity of Unix, the file parms.for is considered to be a different
file from PARMS.FOR.

4. The function GETCL in the source code did not exist in Sun Fortran. In order for
characters from the PEPSE command line to be used in sunpep.f, the function
calls for passing the command line input were altered as follows. The comment
line is the original source code and the next line is the change made to the source
code.

C CALL GETCL(CMD_LINE)
CALL CMDL(L,CMD_LINE)

5. The file nblank.f was to be written to replace the function NBLANK function used
in PEPPC.FOR. The function NBLANK is an intrinsic function of the Fortran used
by PEPSE and it is not available in Sun Fortran.The following is a listing of
nblank.f.

SUBROUTINE NBLANK(STR,I)

C The function returns the length of the string.
C

C STR = String

C I = Length of STR
C

CHARACTER*128 STR
C
DO 100 J=1,128,1
K=J+1
IF(STR(J:K).EQ.' YGOTO 200
100 CONTINUE
I=128
GOTO 300
200 CONTINUE
I=J-1
300 CONTINUE
RETURN
END

4-23

6. All references to CHAR(0) had to be replaced with ' *. The following are some
examples of these changes where the comment line is the original source code.

C IF IN_TEMP(L:L) .NE. CHAR(0)) THEN
IF IN_TEMP(L:L) .NE. "' ') THEN

C OUPATH = OUPATH(1:K)/IN_NAME(1:L)//.OUT'//CHAR(0)
OUPATH = OUPATH(1:K)/IN_NAME(1:L)//.out'

C IF (IN_TEMP(I:]) .NE.'' .AND.
C * IN_TEMP(I:I) NE. CHAR(0)) THEN
IF (IN_TEMP(L'I) .NE. "' .AND.
* IN_TEMP(L:I) .NE. ') THEN

7. All calis to the MS-DOS operating system command “del” were changed to the
Unix equivalent “rm”. The following is an example of this change where the
comment line is the original code.

C IF (EXST) CALL SYSTEM('DEL '//OUPATH(:IEXT)//'BCK")
IF (EXST) CALL SYSTEM('rm //OUPATH(:IEXT)//'bck’)

8. All calls to MS-DOS operating system command “RENAME” were changed to the
Unix equivalent “mv”. The following is an example of this change where the
comment line is the original source code.

C CALL SYSTEM(RENAME '//OUPATH(:OUTLEN)/" '/
C * OUPATH(II:IEXT)/BCK')
CALL SYSTEM('mv //OUPATH(:OUTLEN)//"'//
* OUPATH(I:IEXT)//'bck’)

9. Changes to the printer control were made to remove the carriage control and add
FORM + PRINTER to change |h| top of form character to CNTR L:

C * OPENC(, FILE=IN_TEMP, STATUS = 'OLD/,
C * CARRIAGECONTROL = 'FORTRAN', ERR = 1400)
IF (NOT. RESTRT)

*

OPEN(55,FILE=IN_TEMP,FORM="PRINTER' ,STATUS='OLD',ERR=1400)

4-24

10. The function TIMER does not exist in Sun Fortran and was changed to a similar
Sun Fortran routine called ITIME. The comment line is the original source code.
C CALL TIMER(TICKS)
CALL ITIME(JTM(1),JTM(2),JTM(3))
ITICKS=(JTM(1)*3600)+(JTM(2)*60)+JTM(3)

Changes to PEPSE.FOR

1. The changes made to the PEPSE.FOR file consisted of changing the system
commands from DOS to Unix, changing the INCLUDE references to the Unix
format and some dummy variables to prevent compiler error messages.

Changes to SCRUPD.FOR

Subroutine SCRUPD.FOR is responsible for writing to the screen and therefore had
to have extensive changes.

1. The INCLUDE statements were changed to reflect the UNIX directory structure.

2. EXTERNAL statements were added to allow use of the clrwin and wrstr screen
programs. The following is an example of these changes:

C PVNGS CHANGE AREA
EXTERNAL clrwin !$pragma C(clrwin)
EXTERNAL wrstr !$pragma C(wrstr)
3. The call for the date and time are different for Unix. The comment lines are the
original source code.

C CBLANK(1:)="'
C CALL DATE (CDATE)
C CALL TIME (CTIME)
CALL FDATE (XDATE)
CDATE = XDATE(5:10)//XDATE(20:24)
CTIME = XDATE(12:19)
C

4. Subroutine break.f is used to break into the program with keyboard input. This
feature has not been implemented on the PVNGS Sun LAN. Some of the
programming has been accomplished, however more work is required. This will
be accomplished with calls to C routines.

5. Subroutine cbrk_chk.f is used in conjunction with break.f and is not implemented
on the PVNGS Sun LAN.

6. Subroutine kebord.f is used to read the keyboard buffer and determine if an
interrupt has been issued. As previously stated, this function is not implemented
on the PVNGS Sun LAN. Some of the programming has been accomplished.

4-25

7. Subroutine irs. is the same subroutine as RS.FOR. The name was changed for
consistency with an integer function name (starting with letters i - n).
Memory Addressing

Memory addressing was the most perplexing problem in porting the PEPSE code to
the Unix platform. The problem centered around the way memory is addressed and array
elements are handled. One of the basic differences between the Unix operating system
and the Disk Operating System is the manner in which memory is handled by the
machine. On a machine which uses DOS the memory locations are fixed. When a
program is running it sequesters a particular area of memory for itself and no other
process can use it. Therefore, when programmers decide to use a particular address
they can be assured that it will always be there.This happens because DOS will only
allow one process to run at a time.

In the Unix operating system the memory is relative. Unix constantly swaps memory
around keeping various processes going at the same time. Therefore, what may be a
memory address in one iteration may not be the same address in the next iteration. On a
PC the array elements were defined and stored in absolute memory locations using an
assembly language routine and then retrieved from those locations. In Unix, the
programming had to take into account the relative nature of the memory and come up with
a reference point from which to relate the array element. Since REAL * 8 variables are
used in order to find a particular element of the array, the memory offset was divided by
eight and that number was used to find the element of the array and retrieve the data.

The following subroutines were written by NUS and modified at Palo Verde to perform
memory addressing in Unix environment.

getref.f

DOUBLE PRECISION FUNCTION GETREF(ILOC)
IMPLICIT REAL*8 (A-H,0-Z)

COMMON / AAAAA / AAADUM

DIMENSION REF(1)

EQUIVALENCE (REF(1), AAADUM)
GETREF=REF(ILOC)

RETURN

END

SUBROUTINE STOREF(ILOC,VALUE)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON / AAAAA / AAADUM
DIMENSION REF(1)

4-26

EQUIVALENCE (REF(1), AAADUM)
RETURN
END

INTEGER*4 FUNCTION LOCF (XDUM)
IMPLICIT REAL*8 (A-H,0-Z)

COMMON / AAAAA / AAADUM
DIMENSION REF(1)

EQUIVALENCE (REF(1), AAADUM)
LOCF=((LOC(XDUM)-LOC(REF(1)))/8)+1
RETURN

END

COMMON / AAAAA / AAADUM
DIMENSION REF(1)
EQUIVALENCE (REF(1), AAADUM)

C END OF MODULE

C ili

After all the changes are made to the source code the last step in the porting process
is compiling. The basic compilation process consists of compiling each of the different
files into an object file and then linking the object files together into one executable file.
Compiling and linking the modified source code was a time consuming chore due to the
large number of files involved. We compiled all the files at least a two dozen times before
we had all the bugs worked out and were satisfied with the results. The type of Fortran
used will determine the exact method used to compile, but Sun Fortran had a helpful
command called MAKE.

The MAKE command recompiles only those files that have been changed so the
recompile process is much faster. Compilation times were on the order of 2 to 3 hours to
compile all the files. But, with the MAKE command a new executable file could be made
in a matter of minutes depending on the number of files modified. In order to use MAKE,
a “makefile” containing various compiling options and the names of all the object files in
the library had to be developed. This file can then be used each time any file or files are
modified and need to be recompiled.

4-27

Conclusion

Palo Verde Nuclear Generating Station Thermal Performance has seen an increase
in productivity and the ability to identify and analyze plant thermal performance problems
as a result of implementing the Thermal Performance Monitoring Program on the
PVNGS Sun Local Area Network. The use of PEPSE has become much faster and more
accessible. No abnormalities in the execution of the model have been detected as a
result of porting the PEPSE code to the Sun Unix platform.

Other utilities with Local Area Networks should consider the use of these networks to
assist the thermal performance/results engineers in better performing their tasks. If these
networks happen to be in an Unix environment the utilities could benefit in porting
PEPSE to the Unix environment.

4-28

