

PMAX MW ADVISOR Fossil Application

Erin Carroll – Scientech January 14, 2009

MW Advisor Calculation Overview

- Typical Heat Kit C-Loss Parameters-MS & RH deviations, SH & RH sprays, cond BP, blr O2 & GET, & Aux Power
- Additional C-Loss Parameters- Blowdown & makeup flows, FWH TTD's & DCA's, condenser subcooling, etc.
- Report both heat rate and mw effects in addition to \$/Hr for all monitored parameters

MW Advisor Calculation Overview

- PEPSE model(s) built and tuned to plant data
- HR and MW deviation curves built from multiple PEPSE runs for each monitored parameter
- Curves integrated into PMAX models
- Presentation of results

Controllable Loss—Typical

-JAN-09 BAD: 5:08:20 IVM: 2	 Health Alarm 	B	c	ONT		LE L	OSS SI UNIT#8	UMN	IARY		ross Tur	Gro: b Heat Rat	ss Lo te (Bi	ad (MW) tu/kWHr)	545.39 824
		TOTAL COSTS (\$/HR) 88.53								Net Un	it Heat Ra	te (B	tu/kWHr)	1013	
													SAVINGS		
ALARM	2 5.0		160 10.0	120	80 5.0	4	0 5.0	0	40 12.0	80	120 5.0	160	2	5.0	5.0
COST \$/HR	2.39] 🗖	8.59		3.94		1.29		10.78	2	9.43	-9.47		-0.70	42.2
100			_	-	_	\vdash	_		_	-	_		-		-
.R 80			_	-	_	\vdash			_	-	_	_	-		-
R SAVINGS			-		-	\vdash	_		-	-	-	_			-
40			-	-	-		_		-	-	_	—			-
A 20			-		-				-	F	_				-
				-		-									
20			_		-				-			—			
IL 80															
100									_		_				
	998		09783		2375		999		34652		4.62	3,30		294	4394
AN TARGET	1000		0		2400		1000		0		4.21	4.05	,	295	4048
	THROTTLE TEMP AVG (°F)	SH I (I	SPRAY LOW B/HR)	THR PRE	OTTLE SS AVG PSIG)	RE TEM	HEAT IP AVG (°F)	R	H SPRAY FLOW (LB/HR)	AVG PR (IN	COND ESS HGA)	BOILER 02 (%)	21 L 2	GAS EXIT TEMP (°F)	AUX POWE (KW)
1STG PRESS FAULT TREE	THROTTLE TEMP FAULT TREE			THROT	TLE PRESS	REHE FAU	AT TEMP			COND E FAU	ACK PRS			GAS EXIT TEMP FAULT TREE	

1 50 100 00

SCIENTECH

Controllable Loss—Modeler Inputs

0.0.0.0

Controllable Loss - CNTLOS5	Controllable Loss - CNTL	055
Controllable Loss - CNTLOSS Page 1 Page 2 Page 3 Page 4 Page 5 Common Name: CNTLOSS Date M Description: US CLTURB CYCLE ONLY Project: Prepared By: G.WEBER Project: Static Image 1 Common Static Description I/O Units Auxiliany Power Execution (Y/N) I Common Common Boiler Execution (Y/N) I O Common Common Barometric Pressure I IN HG 731 C EU Throttle Steam Temperature I DEG F 701 C EU Throttle Steam Temperature I DEG F 702 E EU Condenser Back Pressure I IN HG 736 C EU Actual Heat Rate I BTU/KwH 2870 C EU Gross Generation I KW 0 EU Fuel Cost I \$/MBTU 409 C EU Procent Unburned Carbon I %/MBTU 409 C EU	Modified: 04/30/97 No: 1-110 tt: Pow5 S No s No s No c Constant C Constant <tr< th=""><th>OSS X 3] Page 4] Page 5] D355 D355 D355 Date Modified: 04/30/97 Page No:: 1-110 Project: Pow5 BER I I % <</th></tr<>	OSS X 3] Page 4] Page 5] D355 D355 D355 Date Modified: 04/30/97 Page No:: 1-110 Project: Pow5 BER I I % <
CURTISS WRIGHT Flow Control Company SCIENTECH	Heat Rate I BTU/KWH ICEs Auxiliary Power I KW 0 02 I % 838 C02 I % 839 C0 I % 0.0 N2 I % 837 Gas Out Temp I DEG F 722 Throttle Steam Temp I DEG F 710 Throttle Steam Temp I DEG F 711 Condenser Back Press I IN HG 748	Image: Constant C

(

Controllable Loss—Modeler Outputs

Controllable Loss - CNTLOS5	X		•
Page 1 Page 2 Page 3 Page 4 Page 5 Common Name: CNTLOS5 Description: U5 CL TURB CYCLE ONLY Prepared By: G.WEBER Static Description I/O Units Throttle Steam Temp Cost 0 \$/HR Throttle Steam Temp Cost 0 \$/HR 916 Hot Reheat Temperature Cost 0 \$/HR 927 Condenser Back Pressure Cost 0 \$/HR 938 Q2 Cost 0 \$/HR 939 Exit Gas Temperature Cost 0 \$/HR 939 Auxiliary Power Cost 0 \$/HR 939 Heat Rate Cost 0 \$/HR 939 Cost for 1% HR Deviation 0 \$/HR 830	Date Modified: 04/30/97 Page No.: 1-110 Project: Pow5 Image: Image No.: 1-110 Project: Pow5 Image: Image No.: 1-110 Project: Pow5 Image: Image No.: 1-10 Image: Image No.: Pow5 Image No.: Pow6 Image No.: Pow6	TLOSS e 3 Page 4 Page 5 TLOSS CL TURB CYCLE ONLY ZEBER n I/O units mp HR Penalty 0 BTU/KWH HR Penalty 0 BTU/KWH Press HR Penalty 0 BTU/KWH Press HR Penalty 0 BTU/KWH Penalty 0 BTU/KWH Q BTU/KWH Q BTU/KWH Q BTU/KWH Q BTU/KWH Q BTU/KWH	Date Modified: 04/30/97 Page No.: 1-110 Project: Pow5 915 ○ EU 920 ○ EU 983 ○ EU 9997 ○ EU 9397 ○ EU 9397 ○ EU 938 ○ EU 9397 ○ EU 938 ○ EU
OK	Cancel App		
		(DK Cancel Apply Help

low Control Company

SCIENTECH

MW Advisor—Typical

NRIGHT low Control Company

SCIENTECH

R*TIME Dat	t a Viewer - [CLI View Display '	OSS.DIS] Viewer Sec	urity Window Help							_ 8 1	×
e e <i>a</i>	• D B		CLOSS	- ? № ?		closs					
14-JAN	-09 BAD:	45	Health 🔵		PMAX Loss Adviso	r		G	Gross Load (MW)	235.101	
7:18:	47 IVM:	0	Alarm 🍎		Poplar River Unit 2			Gross Turb H	eat Rate (KJ/KG)	8445.6	I
								Net Unit H	eat Rate (KJ/KG)	10715.4	
MENU		CONT	ROLLABLE TU	RBINE LOSSES	ACTUAL		TARGET	HEAT RATE LOSSES (KJ/KWH)	MW EFFECTS (MWe)	TOTAL COST (\$/HR)	
			Main Steam T	emperature	537.5	DEG C	537.8	0.7	0.0	-0.31	
***			Main Steam P	ressure	12827	KPA	12507.1	-17.1	6.2	7.50	
222			Reheat Steam	Temperature	523.2	DEG C	537.8	35.2	-3.2	-15.44	
			Aux Steam Flo	w	0.7	KG/S	0.0	10.2	-0.0	-1.26	
PUMP	OPERAT	IONS	Blowdown Flo	w	0.1	KG/S	0.0	2.9	0.0	-1.26	
	LOSS SUN	MARY	SH Spray Flov	v	1.9	KG/S	0.0	3.9	0.2	-1.70	
BLB			RH Spray Flov	N	0.3	KG/S	0.0	2.5	0.3	-1.08	
Ψ			LP Exhaust P	ressure	8.7	KPA	8.3	17.8	-0.5	-7.82	
			Condenser Si	ubcooling	0.0	DEG C	0.0	0.0	0.0	0.00	
BLR SB			Final FW Tem	p	231.6	DEG C	226.7	-14.2	-1.7	6.23	
-			FWH TTD					-60.3?	1.2?	26.43?	
			FWH DCA					0.6	-0.0	-0.26	
			Makeup Flow		1.5	KG/S	0.0	44.9	-0.3	-19.49	
EWH			BFP Enthalpy	Rise	0.0	KJ/KG	0.0	0.0	0.0	0.00	
II-			CEP Enthalpy	Rise	0.0	KJ/KG	0.0	0.0	0.0	0.00	
			Station Aux P	ower	0.0	MWe	0.0	401.5	-24.3	-175.98	
UTIL		Total C	Controllable Tu	rbine Losses				0.0	0.0	0.00	
		UNCO	NTROLLABLE	TURBINE LOSSE	S						
CALC			Internal Turbi	ne Losses				0.0	0.0	0.00	
-	TURBI	NES	Power Factor		0.99	FRAC	0.90	-9.5	0.3	4.18	
MAN	NORI	AL	Generator Hy	drogen Pressure	398.7	KPA	411.353	-0.7	0.0	0.29	
			Reheat Press	ure Drop	0.061	FRAC	0.058	1.9	-0.2	-0.83	
		Total L	Incontrollable	Furbine Losses				0.0	0.0	0.00	
		ΤΟΤΑ	L ACCOUNTED	DEVIATIONS				0.00	0.00	0.00	
TRENDS											
									Lucro Maria Herrour	D	

0.0.0.0.0.0

PEPSE Model

0-0-0

0-0

00 00

EXCEL Sheet—FWH 4 DCA Effect

🔤 Mi	Microsoft Excel - FWH 4 DCA_EFFECT.xls																								
: 2	📳 Elle Edit View Insert Format Iools Data Window Help R*TIME Type a question for help 🗸 – 🗗 🗙																								
1	😂 🛃 🔒	a a	🕰 💝 🛍	🔏 🗈 🛙	遇 - 🝼 🗌	9 - 19 -	😫 Σ 🕶		l 🛄	100% •		Arial		- 1	.0 -	B	I	υ∣≣	F 🗃	= •	\$	%	😐 - 🎖	<mark>> - </mark> ▲	<u> </u>
1 🗐	10 10 2	🗠 🖄 🛙	3 X 🕅	- Ban (1)	Reply with	n ⊆hanges	End Review.																		
	130	- <i>†</i>	ε.	- • •																					
	A	В	С	D	E	F	G	H	1		J		К	L		M		N		0		Р	G		R
1 1	FWH 4 DC	A MW EFF	ECTS																		-				
2		25%	50%	75%	MCR	315 MW	MDF		_				0.4000 1						-						
3	-20	0.1462	0.0959	0.1616	0.2752	0.2821	0.2904			•			0.3000						- с	Contract	ı		_		
4	-15	0.1106	0.0725	0.1221	0.2079	0.2131	0.2194				•		0.2000						- 1	Series			_		
6	-10	0.0743	0.0466	0.0620	0.1396	0.1431	0.1474			i	-	<u>.</u>	04000						- I'	Series2					
	-5	0.0075	0.0245	0.0413	0.0703	0.0721	0.0742	_	- I-				-0.000 📥	_					- 1	Series3					
8	5	-0.0381	-0.0249	-0.0419	-0.0714	-0.0731	-0.0753		-30_	-20		-10	-0.1000	;	r <mark>o</mark>		20		зр '	Series4					
9	10	-0.0769	-0.0502	-0.0844	-0.1438	-0.1474	-0.1518						-0.2000		•	-	<u>*</u>		- '	<pre>Series5</pre>					
10	15	-0.1157	-0.0758	-0.1276	-0.2175	-0.2229	-0.2295						-0.3000			· .	*		_ L	Series6					
11	20	-0.1545	-0.1014	-0.1715	-0.2923	-0.2996	-0.3084						-0.4000												
12																					_				
13 F	FWH 4 DC	A HR EFFE	CTS	7504																	_				
14	20	25%	50%	75%	MCR 7.4740	315 MVV	MUF Z C400						25,0000 -												
15	-20	-17.8800	-5.7610	-6.3200	-7.4740	-7.5570	-7.6480						29.0000										_		
10	-15	-13.5270 9 nggn	-4.3520 2.9230	-4.7750	-5.6470	-5.7100	-5.7760						15.0000				•	· ·	_	Soriec1	٦⊢				
18	-10	-4 5910	-1.4720	-1.6160	-1.9110	-1.9320	-1.9550		-				10.0000			•		•	_	Series2					
19	0	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000						5.0000	:	,		•		_	▲ Series3					
20	5	4.6710	1.4950	1.6400	1.9410	1.9630	1.9870		-25	-20	45	۲	5.0000) ;) ;	1		15	20	25	× Series4 × Series5					
21	10	9.4300	3.0120	3.3060	3.9130	3.9570	4.0050				•	•	10.0000							 Series6 					
22	15	14.189	4.554	4.998	5.917	5.984	6.056		-		•		15.0000												
23	20	18.948	6.096	6.718	7.954	8.044	8.14			•			-20.0000												
24								L									-								
25										Chart Ar	ea														
26																							_		
27											-												_		
20																					-				
30									- E		1				-		-								
31									-		•			1											
32																									
33																									
34																									
35																									
36																					-				
37																							_		
38											-			1									-		
40																									
40																							-		
42																					-				
13				n (a	1	(c) 10 /					<u> </u>			l							1		-		
114 4		KOTTLE TEMP	ERATURE HR	D / Sheet1	λSheet2 μ	Sheet3 /																			
Ready	/																						NUM		

0.0.0.0.0.0.q.q.q.o

00 00

EXCEL Macro—FWH 4 DCA Effect

SCIENTECH

🗄 🛃 Eile Edit View Insert Format	Debug Run Tools Add-Ins Window	Help			Type a question for I	nelp 🗸 👻
i 🛛 🛅 - 🔜 i 🕺 🗈 🛍 🗚 i 🤊	🛠 😵 📷 🖬 🖬 🖉	🕑 🛛 Ln 1, Col 1	Ŧ			
Project - VBAProject 🛛 🗙	(General)	-	Deviation			
	Sub Deviation()		,			
E & PMAX (pmax.xla)	Dim Pense As Object					
🗄 🕺 PMAX (pmaxreport.xla)	Dim model As Object					
🖃 🚳 VBAProject (FWH 4 DCA_EFF	Dim component As Object	ε t				
🖻 🚔 Microsoft Excel Objects	Dim job As Object					
Chart1 (THROTTLE TEMF	Dim results As Object					
Sheet1 (Sheet1)	Dim outf As Object					
Sheet2 (Sheet2)	Dim runjob As Object					
ThisWorkbook	Dim Loads(7) As String	ſ				
E 😁 Modules	loads(1) = "MDF"					
Module1	loads(2) = "315 MW"					
🗄 😻 VBAProject (steam.xla)	loads(3) = "MCR"					
	loads(4) = "75%"					
	loads(5) = "50%"					
	loads(6) = "25%"					
	' open model					
	Set Pepse = CreateObje	ct("Pepse.Application")				
	Set model = Pepse.Oper	("C:\pepse\pr2_pmax.mdl"	")			
	Set job = model.JobDes	cription(1)				
	job.InputFile = "C:\pe	pse\pr2 pmax.JOB"				
	job.CloseWindow = True	-				
	Set component = model.	component(330, 1)				
	' get the original ter	minal				
	terminal = component.c	lca – 20				
	Sheets("Sheet1").Range	("B5.F15").ClearContents	1			
	For i = 0 To 8					
	For j = 1 To 6					
In	mediate		× Watches			
			 Expression 	Value	Type C	ontext
1 1						

4.0.0.0.0 g

MW Advisor—Models & Spreadsheets

0.0.0

C:\UUNK\PR2 HR & MW Effects					
File Edit View Favorites Tools Help					an 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19
🕒 Back 🔹 🕥 🖌 🏂 🔎 Search 👔	🏂 Folders 🛛 🔛	۵ 🗙 😒			
Address 🗁 C:\!JUNK\PR2 HR & MW Effects					💌 芛 Go
Name	Size	Type 🔺	Date Modified	Attributes	
CIENTECH	5.00	File Folder	1/11/2009 6:36 PM	Thermodeou	
AUX STM FLOW EFFECT.xls	60 KB	Microsoft Excel Wor	10/22/2008 4:06 PM	A	
BFP DELTA ENTHALPY EFFECT.xls	57 KB	Microsoft Excel Wor	12/15/2008 3:13 PM	A	
BFP EFFICIENCY EFFECT.xls	57 KB	Microsoft Excel Wor	12/15/2008 3:00 PM	А	
BFP_HEAD_EFFECT.xls	59 KB	Microsoft Excel Wor	12/15/2008 3:34 PM	A	
BLOWDOWN FLOW_EFFECT.xls	59 KB	Microsoft Excel Wor	10/22/2008 5:18 PM	A	
CEP_DELTA_ENTHALPY_EFFECT.xls	59 KB	Microsoft Excel Wor	12/16/2008 9:06 AM	А	
CEP_EFFICIENCY_EFFECT.xls	56 KB	Microsoft Excel Wor	12/16/2008 11:42 AM	А	
CEP_HEAD_EFFECT.xls	60 KB	Microsoft Excel Wor	12/16/2008 9:07 AM	А	
COND SUBCOOLING_EFFECT.xls	58 KB	Microsoft Excel Wor	10/20/2008 4:45 PM	A	
FWH 1 DCA_EFFECT.xls	57 KB	Microsoft Excel Wor	10/15/2008 1:54 PM	А	
FWH 1 TTD_EFFECT.xls	57 KB	Microsoft Excel Worksh	eet (/15/2008 2:40 PM	A	
FWH 2 DCA_EFFECT.xls	56 KB	Microsoft Excel Wor	10/15/2008 3:00 PM	A	
FWH 2 TTD_EFFECT.xls	54 KB	Microsoft Excel Wor	10/15/2008 2:05 PM	A	
FWH 4 DCA_EFFECT.xls	61 KB	Microsoft Excel Wor	1/14/2009 7:37 AM	A	
FWH 4 TTD_EFFECT.xls	53 KB	Microsoft Excel Wor	10/15/2008 2:13 PM	A	
FWH 5 DCA_EFFECT.xls	58 KB	Microsoft Excel Wor	10/15/2008 3:13 PM	A	
FWH 5 TTD_EFFECT.xls	55 KB	Microsoft Excel Wor	10/15/2008 2:19 PM	A	
FWH 6 DCA_EFFECT.xls	58 KB	Microsoft Excel Wor	10/15/2008 3:16 PM	A	
FWH 6 TTD_EFFECT.xls	69 KB	Microsoft Excel Wor	10/29/2008 9:14 PM	A	
GEN H2 PRESS_EFFECT.xls	61 KB	Microsoft Excel Wor	10/20/2008 12:26 PM	A	
GEN PF_EFFECT.xls	62 KB	Microsoft Excel Wor	10/20/2008 12:44 PM	A	
HP 1 EFFICIENCY_EFFECT.xls	59 KB	Microsoft Excel Wor	12/17/2008 6:07 PM	A	
HP GS EFFICIENCY_EFFECT.xls	59 KB	Microsoft Excel Wor	12/17/2008 6:07 PM	A	
HR & MW Desired List.xls	24 KB	Microsoft Excel Wor	10/22/2008 5:59 PM	A	
IP 1 EFFICIENCY_EFFECT.xls	59 KB	Microsoft Excel Wor	12/18/2008 10:29 AM	A	
IP 2 EFFICIENCY_EFFECT.xls	59 KB	Microsoft Excel Wor	12/18/2008 10:42 AM	A	
UP 1 EFFICIENCY_EFFECT.xls	60 KB	Microsoft Excel Wor	12/18/2008 10:44 AM	A	
UP 2 EFFICIENCY_EFFECT.xls	60 KB	Microsoft Excel Wor	12/18/2008 10:46 AM	A	
UP 3 EFFICIENCY_EFFECT.xls	60 KB	Microsoft Excel Wor	12/18/2008 10:48 AM	A	
UP 4 EFFICIENCY_EFFECT.xls	60 KB	Microsoft Excel Wor	12/18/2008 10:51 AM	A	
UPT EXH PRESS_EFFECT.xls	61 KB	Microsoft Excel Wor	10/21/2008 4:11 PM	A	
MAKE UP FLOW_EFFECT.xls	60 KB	Microsoft Excel Wor	10/20/2008 4:01 PM	A	
REHEAT PRESS DROP_EFFECT.xls	59 KB	Microsoft Excel Wor	10/17/2008 7:34 AM	A	
REHEAT TEMP_EFFECT.xls	57 KB	Microsoft Excel Wor	10/14/2008 8:36 AM	A	
RH ATTEMP_EFFECT.xls	64 KB	Microsoft Excel Wor	12/9/2008 4:39 PM	A	
SH ATTEMP_EFFECT.xls	64 KB	Microsoft Excel Wor	12/9/2008 5:00 PM	A	
THROTTLE PRESS_EFFECT.xls	63 KB	Microsoft Excel Wor	10/14/2008 2:48 PM	A	
THROTTLE TEMP_EFFECT.xls	57 KB	Microsoft Excel Wor	10/14/2008 4:07 PM	A	
PR2_PMAX.MDL	678 KB	PEPSE Document	12/17/2008 4:49 PM	A	
PR2_PMAX_BD.MDL	510 KB	PEPSE Document	10/22/2008 5:07 PM	А	
PR2_PMAX_EFF.MDL	578 KB	PEPSE Document	12/17/2008 6:05 PM	A	
PR2_PMAX_PUMP5.MDL	578 KB	PEPSE Document	12/15/2008 2:23 PM	A	
PR2_PMAX_PUMPS_EFF.MDL	486 KB	PEPSE Document	12/16/2008 11:37 AM	А	

MW Advisor—Benefits

- Refined approach to identifying and reporting Controllable Loss parameters
- Reported parameters not restricted to standard heat kit correction curves
- Utilized extensively throughout PMAX nuclear installations
- Alarming criteria can be assigned to report exceptions

Alarm Management of Critical Parameters

Company

R*TIM	IE Data Viewer - [sort Edit View Display Vi	_summary.dis] ewer Security Window H	Help								_ & 2 _ & 2
14-3 8:0	≧ 😂 40145 10 JAN-09 BAD: 06:39 IVM:	비나나 I sort Health 5 Alarm	summary		Utility closs	alarms4	sort_summary	DEACT High Alarm Hig	IVATED ALARN	AS Low Ale	Low Alarm
APP	GROUP	NAME		Desc	cription		UNITS	VALUE			RY Toggle DATE
Pdp	12345678	1ggmw	U1 1PX	S901 GROSS	GENERATIO	N (MW)	MW	175.870	175.000	NUI	12/11 09:06:33.
Pmax	(1RHB POT	U1 Uni	t 1 B Prim	ary Reheat	er	DEG F	1000.000	1000.000	NUI	12/11 09:06:33.
Pdp		3AHGITRGT	U1 TAR	GET INLET	GAS TEMP		DEG F	737.330	730.000	NUI	12/11 09:06:33.
Pdp	Зуснемр	3AI0802	U1 DRU	M CONDUCTI	VITY		Umho	38.270	35.000	NUI	12/11 09:06:33.
Pdp	Зуснемр	3AI0909	U1 DRU	M CLORIDE		View Tren	РРВ	393.950	120.000	NUI	12/11 09:06:33.
Pdp	Зуснемр	3AI1101	U1 FW	CONDUCTIVI	TY		Umho	4.870	4.500	NUI	12/11 09:06:33.
Pdp		3AI2001	U1 FLU	E GAS 02			%	2.340	2.400	NUI	12/11 09:06:33.
Pdp	34LPFWHp	3DR10005	U1 FWH	5 DRP APP	ROACH (DCA	5	DEG F	6.400	6.000	NUI	12/11 09:06:33.
Pdp	3cPULFDp	3FI3901D	U1 D M	ILL PA FLO	w	-	KLB/HR	76.510	70.000	NUI	12/11 09:06:33.
Pdp	3bPULFDp	3113501c	U1 C M	ILL MOTOR	AMPS		AMPS	100.980	100.000	NUI	12/11 09:06:33.
Pdp	3cPULFDp	3113501D	U1 D M	ILL MOTOR	AMPS		AMPS	102.370	100.000	NUI	12/11 09:06:33.
Pdp	3dPULFDp	3113501E	U1 E M	ILL MOTOR	AMPS		AMPS	100.660	100.000	NUI	12/11 09:06:33.
Cmax	31HPFWHp	3LC0201	U1 2 F	WH LEVEL			INWC	7.980	7.800	NUI	12/11 09:06:33.
Cma	34LPFWHp	3LC0501	U1 5 F	WH LEVEL			INWC	7.020	7.500	NUI	12/11 09:06:33.
Cma	3aCONDPp	3PD12031A	U1 AH	A DRAFT DP			INWC	8.100	8.000	NUI	12/11 09:06:33.
Pmax	· 35LPFWHp	3PI0601	U1 EXT	то 6 гмн	PRESS		PSIG	7.202	-1.400	NUI	12/11 09:06:33.
Pmax	36LPFWHD	3PI0701	U1 EXT	ТО 7 ЕМН	PRESS		PSIA	8.577	10.800	NUI	12/11 09:06:33.
Pmax	3bBFPPp	3PI1202A	U1 A B	FP DISCHAR	GE PRESS		PSIG	3261.300	3100.000	NUI	12/11 09:06:33.
	TIVE	Applica	tions	ACTIVE	A11	Alarms	by Time	Unack		age 1	\Box
M	essages		ACKN OP	OWLEDGE A	ck Page Acl	Cagtegory	Ack All		C'd Pag 116	je 1 of more a	larm(s)
Display Pro	gram Activation.								USER: R*X	\$SERVER: foss	ild NUM

Questions ??

JRTISS WRIGHT Flow Control Company SCIENTECH

CURTISS

R*TIME Da	a ta Viewer - [CL View Display	. 055.DIS] Viewer Sec	urity Window Help							
	3 D C			₹ 8 k?		closs				
14-JAN	-09 BAD:	45	Health 🔵		PMAX Loss Adviso	r		C	Gross Load (MW)	235.101
7:18:	47 IVM:	0	Alarm 🍎	_	Poplar River Unit 2			Gross Turb H	leat Rate (KJ/KG)	8445.6
								Net Unit H	leat Rate (KJ/KG)	10715.4
MENU		CONT	ROLLABLE TU	JRBINE LOSSES	ACTUAL		TARGET	HEAT RATE LOSSES (KJ/KWH)	MW EFFECTS (MWe)	TOTAL COST (\$/HR)
			Main Steam	Temperature	537.5	DEG C	537.8	0.7	0.0	-0.31
222			Main Steam I	Pressure	12827	KPA	12507.1	-17.1	6.2	7.50
444			Reheat Stear	n Temperature	523.2	DEG C	537.8	35.2	-3.2	-15.44
			Aux Steam F	low	0.7	KG/S	0.0	10.2	-0.0	-1.26
PUMP	OPERAT	IONS	Blowdown Fl	low	0.1	KG/S	0.0	2.9	0.0	-1.26
	LOSS SU	MMARY	SH Spray Flo	W	1.9	KG/S	0.0	3.9	0.2	-1.70
			RH Spray Flo	W	0.3	KG/S	0.0	2.5	0.3	-1.08
			LP Exhaust F	Pressure	8.7	KPA	8.3	17.8	-0.5	-7.82
			Condenser S	Subcooling	0.0	DEG C	0.0	0.0	0.0	0.00
BLR SB			Final FW Ten	np	231.6	DEG C	226.7	-14.2	-1.7	6.23
			FWH TTD					-60.3?	1.2?	26.43?
			FWH DCA					0.6	-0.0	-0.26
			Makeup Flow	v	1.5	KG/S	0.0	44.9	-0.3	-19.49
FWH			BFP Enthalp	y Rise	0.0	KJ/KG	0.0	0.0	0.0	0.00
The second second			CEP Enthalp	y Rise	0.0	KJ/KG	0.0	0.0	0.0	0.00
1170			Station Aux F	Power	0.0	MWe	0.0	401.5	-24.3	-175.98
UTIL		Total C	ontrollable Tu	urbine Losses				0.0	0.0	0.00
		UNCO	NTROLLABLE	TURBINE LOSSES	1					
CALC			Internal Turb	ine Losses				0.0	0.0	0.00
-	TURB	INES	Power Facto	r	0.99	FRAC	0.90	-9.5	0.3	4.18
MAN	NOR	VIAL	Generator Hy	drogen Pressure	398.7	KPA	411.353	-0.7	0.0	0.29
			Reheat Press	sure Drop	0.061	FRAC	0.058	1.9	-0.2	-0.83
		Total U	ncontrollable	Turbine Losses				0.0	0.0	0.00
		ΤΟΤΑ		D DEVIATIONS				0.00	0.00	0.00
TRENDS										
									from a from the second	

00

00 00