PERFORMANCE TESTING UPDATES FROM DAIRYLAND POWER COOPERATIVE

BY

Duane Hill Manager, Performance Administration Dairyland Power Cooperative 3251 East Avenue LaCrosse, WI 54601

INTRODUCTION

Dairyland Power Cooperative is a relatively small utility located in Western Wisconsin. Dairyland has seven coal fired units ranging in size from 20 MW to 360 MW. Total output capacity is approximately 1,000 MW. Dairyland services 28 cooperatives in Wisconsin, Minnesota, Iowa, Illinois and the upper part of Michigan. The primary load for the system is rural. Hence, the daily load curve features a double peak; one at 7:00 AM and one at 7:00 PM. All of Dairyland's units are load following and will drop to lower loads at night.

Of the seven units, three are 20 MW peaking units, which were built in the 1940s. All three of these units are located at the Alma Station. Except for yearly capability tests, there is no performance monitoring done on these units. The remainder of Dairyland's generation fleet is comprised of a 60 and 90 MW unit, both located at the Alma Station, a 360 MW unit located at the John P. Madgett (JPM) Station and another 360 MW unit at the Genoa Station. All four units have PMAX systems on them for performance monitoring. Dairyland is in the process of converting the PMAX systems from VAX based to NT based platforms. It is estimated that the conversion will be complete by the end of summer in 1999.

Dairyland maintains a staff of six people involved with performance monitoring. The performance staff is made up of two engineers at the corporate office, a computer technician at the corporate office (to maintain the various performance programs), and a performance technician at each of the Alma, JPM and Genoa Stations. The plants are all within 50 miles of the corporate offices. Data from each of the plants may be accessed at any of the plants as well as the corporate offices.

Dairyland has developed several tools, which enable the performance staff to conduct and evaluate performance information at all four units. Three of these tools will be discussed in this paper. These are:

- 1). A set of auto-test calculations on each of the PMAX systems.
- 2). Use of Excel spreadsheets to assist in the analysis of test data.
- 3). Use of a data validation program in conjunction with PMAX.

PMAX Auto-Test

The four major units in Dairyland's system are all subject to load following. This means that each unit must be tested at several points in order to develop an accurate heat rate curve. For JPM and Genoa, a total of eight test points for each unit are needed to develop a full load range heat rate curve. Alma #4 and #5 both need six test points to develop their heat rate curves. The result is a total of 28 heat rate tests, which need to be performed during the course of a year. This does not include additional tests conducted to get seasonal heat rate curves. Combine these heat rate tests with other specialized tests throughout the year and you end up with an awful lot of tests to conduct and analyze. Dairyland would need a much larger performance staff to accomplish just the testing and analysis, not to mention the day-to-day activities.

We developed a tool utilizing the PMAX system to help collect test data whenever the unit is at a "stable" condition. A stable condition is achieved after the unit has achieved the desired load and has reached thermodynamic equilibrium. During a stable condition, the load may fluctuate slightly. The amount of load fluctuation allowed is different with each unit. Utilizing the new Sequence on a Clock function available on PMAX, each PMAX system will automatically determine if the unit is at a stable condition and collect test data. Once the data is collected, it is stored in a test archive file for easy retrieval. Two sequences per unit are required to conduct the automatic testing. Figures 1 and 2 show flow charts for each of the two sequences. The first sequence determines the stability of the conditions and calculates the test values. The second sequence stores the test values to the archive file.

4-2

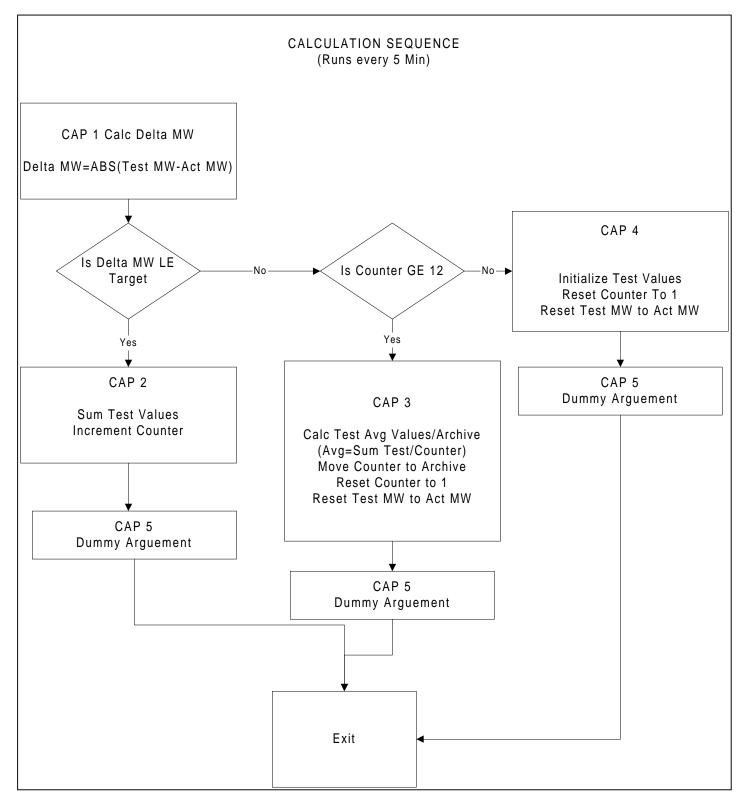


Figure 1 PMAX Auto Test Flow Chart

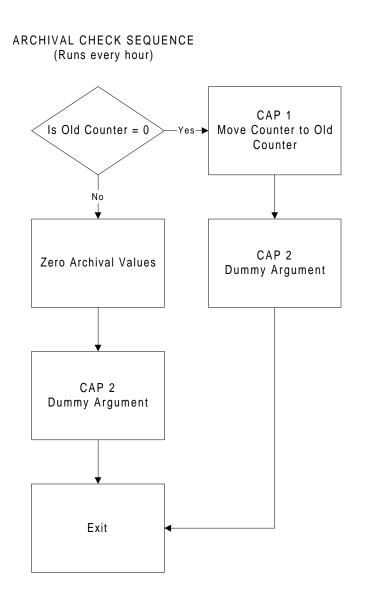


Figure 2 PMAX Auto Test Archive Flow Chart

Sequence on a Clock is a new function in the PMAX NT system. This function allows the user to start a given sequence at a given time interval. The user may specify the time intervals. This function allows and replaces the CAL function from the VAX based PMAX system. At Dairyland, we are using this function to also create logs for the various plants. In some of these logs, we are taking pulse counter and/or totalizer readings at specific intervals.

The steps, which make up the calculation sequence, are:

- Raw data is averaged on five-minute intervals.
- Every five minutes, PMAX compares the actual MW output with a "test" value.
- If the absolute difference between actual MW and test MW is less than or equal to a constant, then a counter is incremented and the actual test values are summed.
- If the absolute difference of actual MW and test MW is greater than the constant, the counter and test data sums are reset and the actual MW becomes the new test MW for comparison.
- Prior to resetting the counter and test data sums, the program looks at the value of the counter. If the counter is greater than or equal to 12, the program divides each test data sum by the counter to give an average for the time period. The averaged test data is then moved to a separate archive location. After performing the test averages, the counter and test data sums are reset.
- If the counter is less than 12, the counter and test data sums are reset.

The steps for the archival sequence involve moving test data to a separate archive location on an hourly basis. After the data has been archived, the archive locations are reset to a value of zero.

A set of generic values is created for each unit. These values are shown in Figure 3. The methodology is the same for each unit, only the data locations are changed.

Using this method, one can search the archive file for test MW values greater than zero. Any values that show up indicate a time period when the unit was at a "stable" condition.

	JPM	Alma 4	Alma 5	
Target Delta MW	5	2	2	
Target Min Counter	12	12	12	
Calc Seq	10	10	12	
Delta MW	10-1	10-1	12-1	
Sum Test	10-2	10-2	12-2	
Avg Test	10-3	10-3	12-3	
Init Test	10-4	10-4	12-4	
Dummy	10-5	10-5	12-5	
Arch Seq	11	11	13	
Move Cntr				
Zero Arch				
MW Search	10692	18686		
Counter	10900	18900	19900	
Test MW	10901	18901	19901	
Delta MW	10902	10902 18902		
Final Counter	10903			
Old Counter	10908	18908	19908	

Figure 3 PMAX Auto Generic Values

The value of the test counter in the archive file tells how long the unit was at that condition. Over the course of a month, several data points may be collected at multiple loads.

Test Data Analysis

The PMAX auto-test function described above has the potential for creating a lot of test data. How does one evaluate this data in an efficient manner? PEPSE is a good program for determining unit performance, but does not do a good job if there are problems with the test data. A preliminary examination of the test data must be done prior to submitting the data for analysis with PEPSE. Dairyland Power Cooperative has developed spreadsheet templates which will evaluate the test data, submit the data to a PEPSE deck, and store the data and results in a database for future reference.

The spreadsheets developed at Dairyland involve using Excel 97, an add-in program call ENDRESULT, and the PMAX to Excel interface. ENDRESULT is a program add-in, which enables Excel to calculate steam table and gas table calls plus curve fitting. This program is available from SEGA Inc. in Kansas City. The PMAX to Excel interface allows the user to directly transfer data from a PMAX system to an Excel spreadsheet. Knowing the test date, the time the data was archive, and the duration of the test enable the user to download the appropriate data to the spreadsheet. Figure 4 shows an example of a test data spreadsheet.

The spreadsheets are templates. After data is entered, the spreadsheet is saved with a unique name that encrypts the unit being tested and the date of the test. An example would be J5699A.XLS would indicate the test was performed at JPM (J), the date is 5/6/99, and A indicates this was the first test of the day. There may be other tests for that date. These would end with a B, C, etc.

4-7

JPM PERFORMANCE TEST DATA

DATE TEST.

			TEST				
			NO VLVS:				
BJTBL	DESCRIPTION	UNTS		CORRECTED	STD		
					CORR	COAL ANALYSIS DATA	4
1601	AH 61 SECAIR IN TEMP	DEGF	101.45			PROXIMATE ANALYS	SIS
1602	AH 62 SECAIR IN TEMP	DEGF	101.24			VOL(%)	
	SECARTOAH 61 TEMP	DEGF	105.30			S(%)	
	SECAIR TOAH 62 TEMP	DEGF	103.91	102.98		H2O(%)	
	SECAR FROM AH61 TEMP	DEGF	654.38			ASH (%)	
	SECAIR FROM AH 62 TEMP	DEGF	665.01	659.69		FXEDC(%)	
	'PRIARFROMAH61 TEMP	DEGF	656.56	000.00		BTU/LB	
	B PRIAR FROM AH 62 TEMP	DEGF	657.00	656.78		DIGED	
) GASTOAH 61 TEMP	DEGF	719.15	000.70			
	GAS TOAH 62 TEMP	DEGF	742.15	730.65		Data Rec	luctio
				730.03			
	CASTROMAH 61 TEMP	DEGF	313.23			Create PEF	SEL
	GASTROMAH 62 TEMP	DEGF	343.95				
		DEGF	330.47			Print Test S	Sumr
	5 AH 62 GASCUTTEMP	DEGF	340.70	332.09			
	ECONOMIZER GAS OUT - VEST	DEGF	830.83			Print PEP	SED
	FV/TOECONOMIZER TEMP	DEGF	459.82				
) ECONCUTLET TEMP-EAST	DEGF	568.09			Send Data To	Dat
) ECONCUTLET TEMP=WEST	DEGF	578.32	573.21			
) RH BEFORE SPRAYS	DEGF	626.28				
1654	HOT REHEAT STEAM TEMP.	DEGF	962.13			Save File To A	noth
1660) THROTTLE STEAM TEMP	DEGF	948.44				
1664	4 FWH 63 EXTRACT TEMP.	DEGF	524.24				
166	5 FWH 63 EXTRACT TEMP	DEGF	535.90				
1666	6 FWH 63 EXTRACT TEMP.	DEGF	530.47	530.20			
1670	0 COND. TOFWH 61	DEGF	90.75				
1672	COND. TOFWH 62	DEGF	173.80				
1673	COND. FROM FWH 62	DEGF	233.79				
1674	COND TOFWH63	DEGF	234.02				
1675	COND FROM FWH 63	DEGF	287.93				
1676	COND TOBEP 61	DEGF	369.72				
1677	COND TOBEP 62	DEGF	369.63	369.68			
	0 COND TOFWH 64	DEGF	274.97				
	FWH 64 EXTRACT TEMP	DEGF	715.56				
	FV/FROM FV/H65 TEMP	DEGF	409.20				
	B FWTOFWH65 TEMP	DEGF	373.65				
	FWFROM FWH 66 TEMP	DEGF	460.03				
		DEGF	404.47				
) FWH 62 EXTRACT TEMP	DEGF	290.00				
	PWH61 EXTRACT TEMP.	DEGF	176.10				
	5 FWH 61 DRAIN TEMP	DEGF	178.10				
	FWH 62 DRAIN TEMP.	DEGF	190.08				
	' FWH 63 DRAIN TEMP.	DEGF	249.35				
	B FWH 65 DRAIN TEMP	DEGF	388.91				
	P FWH 66 DRAIN TEMP.	DEGF	419.04				
	2 ONDER CIRC WITE 61 IN	DEGF	33.82	~~~~			
	CNDER CIRC WIR 62 IN	DEGF	33.94	33.88			
	CNDSRCIRCWTR61OUT	DEGF	69.45				
	5 ONDER CIRC WITR 62 OUT	DEGF	68.64	69.05			
	COND FROM CONDENSER TEMP	DEGF	96.74				
) FWH 65 EXTRACT TEMP.	DEGF	856.46				
1753	BANH 66 EXTRACT TEMP	DEGF	627.96				
1763	3 PRISH SPRAYTEMPEAST	DEGF	780.39				
1764	I PRISH SPRAY TEMP4/VEST	DEGF	760.86	770.63			

tian Deck nmary Deck atabase

her Name

Figure 4 Example of Spreadsheet Input

Test data may be entered one of two ways depending on the way the auto-test was set up. If auto-test is being used to just provide a test MW and counter value, test data will have to be averaged. In this case, the user enters the start time and date and the end time and date or duration for all of the test data required. A separate page of the spreadsheet can be used to average test data. If the auto-test was set up to provide test averages for all test data, then the user simply brings over the data from the test date and archive time for one time period. Either way, once averaged data obtained, it may be copied into the data section of the template. It is best to have the spreadsheet calculate on a manual basis rather than automatic. On automatic, every time a new item of data is entered, the spreadsheet will recalculate. This is not only time consuming but can get very frustrating.

Once calculations are completed, the data may be viewed to determine its validity. If the data is valid, a macro may be activated to create a PEPSE deck. With the newer versions of PEPSE, the PEPSE run can be activated right from Excel. With older versions, the PEPSE run is activated manually. Figures 5 and 6 show examples of the PEPSE Input Deck developed by the spreadsheet, calculations available, and the test summary page.

Advanced Calibration Monitoring (ACM)

Advanced Calibration Monitoring (ACM) was installed at the JPM Station in 1998. This is a program, which looks at the incoming data and analyzes it for validity. This may sound like PMAX's Input Validation Module, but is actually quite different. Whereas the Input Validation Module looks at input data for validity, it is based on a given range of operation and curves. This does not account for any changes in operation or gradual changes in the instrument. ACM, on the other hand, compares how one piece of data is performing compared to all of the other inputs that are modeled. ACM is more dynamic and much more sensitive. We have tied ACM into the Input Validation Module on PMAX for both checking and replacing of values. Marcus Caudill of Performance

890010 HEEDWATER RLOW	
890011 CPVB, 12, 2323236.7, 1	
/ = JRMTURBINETEST 3/7/96	
890010 FEEDWATER FLOW	
890011 CPVB, 12, 2323236.7, I	JPM TURBINE BFFI QENCY
890020 'THROTTLE PRESSURE	
890021 FFVSC, 10, 181612, I	THROTTLE FRESS PSA 18/4/70
890030 'THROTTLETEMPERATURE	THROTTLETEMP DEGF 948.44 FIRST STAGEPRESS PSIA 1344.50
890031 TTVSC, 10,958.92, I 890040 'FIRST STAGEFRESSURE	FIRST STAGEPRESS PSIA 1344.50 FIRST STAGETEMP DEGF 886.77
890041 PSIPV 50, 1263.23, I	COLD REFEAT REES PSA 471.76
890050 'HPEXHAUST FRESSURE	COLD REHEAT TEMP DEGF 626.28
890051 PSIPV, 70, 471.69, I	HOT RELEAT PRESS PSA 439.86
890060 'HPEXHAUST TEMPERATURE 890061 TEXIP, 70, 636.49, I	HOT REHEAT TEMP DEGF 962.13 IP1 FRESS PSIA 288.82
890070 'HOT REHEATER FRESSURE	IP1 TEVP DEGF 856.46
890071 FPTCRH, 120, 440.05, I	CROSSOURE FRESS PSA 173.06
890080 HOT REHEATER TEMPERATURE	CROSSOURR TEMP DEGF 715.56
890081 TTTCRH, 120, 965.11, I	LP1 FRESS PSA 76.82
890090 'OROSSOVER PRESSURE' 890091 PSIPV, 170, 179, 46, 1	LP-1 TEMP DEGF 530.20
890100 'CROSSOVER TEMPERATURE	HN HOUT Hs EFF Sin Sout
890101 TEXIP, 170, 729.01, I	GOVERNING STAGE 1447.79 1427.27 1407.20 0.5056 1.5516 1.5667
890110 CONDENSER FRESSURE	HP1 1427.27 1317.23 1300.55 0.8683 1.5667 1.5823
890111 PPSH, 260, 0.79, 1	HP 1447.79 1317.23 1284.78 0.8009 1.5516 1.5823 IP1 1501.82 1451.19 1440.23 0.8220 1.7381 1.7485
890120 'HTR 1 FWINTEMPERATURE 890121 TTDISP: 280, 96,45, I	IP-1 1501.82 1451.19 1440.23 0.8220 1.7381 1.7465 IP-2 1451.19 1383.60 1382.33 0.9816 1.7465 1.7476
890130 HTR 1 PWCUT TEMPERATURE	IP 1501.82 1383.60 137257 0.9146 1.7381 1.7476
890131 TTFO, 290, 176.16, I	LP-1 1383.60 1296.59 1289.22 0.9219 1.7476 1.7551
890140 HTR 1 DRAIN TEMPERATURE	
890141 TTDO, 290,111.94, I 890150 'HTR1 STEAM PRESSURE	H S SUMY 5633.2085 THROTTLE 1447.79 1.551.6 SUMX 6.9871902
890150 FIRTSIEAMIHESSURE 890151 PSIPV, 220, 875, I	GOV STAGE 1427.27 1.5667 SUMX2 12.205352 SUMY2
890160 HTR 2 FWCUT TEMPERATURE	HP1 1317.23 1.5823 SUMXY 9838.3038
890161 TTFO, 300, 235.37, I	HOT REHEAT 1501.82 1.7381 (SUMX)2 48.820827
890170 HTR 2 DRAIN TEMPERATURE	IP-1 1451.19 1.7465 39360.299
890171 TTDO, 300,192.14, I 890180 'HTR 2 STEAM FRESSURE	IP-2 1383.60 1.7476 B -12215 R2 LP-1 1296.59 1.7551 A 22745.8
890181 PSIPV, 210, 27.42, I	
890190 HTR 3 FWCUT TEMPERATURE	IP1 IP2 LP1
890191 TTFO, 310, 288.31, I	PRESS 244.87 142.06 67.44
890200 HTR 3 DRAIN TEMPERATURE	Tad: 857.26 725.37 575.09
890201 TTDO, 310, 250.86, I 890210 'HTR 3 STEAM PRESSURE	Hadt 1.453.26 1390.11 1.319.50 Hnew 1.41.218 1398.99 1.307.29
890211 PSIPV, 200, 80.21, I	Tnev 777.87 742.94 550.30
890220 HTR 3 STEAM TEMPERATURE	
890221 TEXIP, 200, 543.71, I	
890230 BFP DISCHARGE FRESSURE	JPM BOLLER EFFI QENCY JPM TEST SU
890231 FIVIFDIS, 330, 2049.50, I	
890240 BFPDISCHARGETEMPERATURE	COAL ANALYSIS DATA
890241 TTDISP, 330, 376.31, I	ULTIMATEANALYSS AIRINTEMP 102.98
890250 'HTR 5 FWCUT TEMPERATURE	C (%) 0.53 GASCUT TEMP 332.09 H2 (%) 0.04 %EXCESS 02 1.82
890251 TTFO, 350, 411.61, I 890260 'HTR 5 DRAINTEVPERATURE	02(%) 0.11 STACK CO2 13.09
890261 TTDO, 350, 386,97, I	N2(%) 0.01
890270 HTR 5 STEAM FRESSURE	S (%) 0.00 0
890271 PSIPV, 160, 291.94, I	H2O(%) 0.27 0
890280 'HTR 5 STEAM TEMPERATURE 890281 TEVID: 180,859,58 J	ASH (%) 0.04 0.000666 BTULB 8915.00
890281 TEXIP, 160, 859.58, I 890290 'HTR 6 FWCUT TEMPERATURE	
890291 TTFO, 360, 443.94, I	COMBUSTION CALCS
890300 HTR 6 DRAIN TEMPERATURE	INLET DRY GAS
890301 TTDO, 360, 418, 46, I	WET GAS DRY GAS ASIVE
890310 'SUPERHEAT SPRAY FLOW' 890311 OPVB, 13, 84352.7, I	EXCESS AIR % 10.601% CC2 %B/Vd 15.080% 17.035%
890311 OPVB, 13, 843527, 1 890320 'REHEATER SPRAY FLOW'	CC2 % By Vid 15.080% 17.035% C2 % By Vid 1.816% 2.051% BCILEREFFICENCY CALCS
890321 WWFIXB, 345, 64882.4, 1	CO %By Vol 0 0 0 Bt v/ib Loss/i+t/ Loss?
890330 GROSS POWER	N2 %By Vd 71.606% 80.914% 80.940% Cp Air 0.2398654

Figure 5 Example of Spreadsheet Calculations and PEPSE Deck

DATE #REF. GROSSIMW 363.6 NETIMW 340.3 URBINE EFFICIENCIES GOVSTAGE 50.56% HP.1 86.83% HPSECT 80.09% IP2 98.16% IP2 98.16% IP2 98.16% IP2 98.16% IP3ECT 91.46% IP41 82.20% IP3ECT 91.46% IP41 92.19% HTRO 2002 9.76 17.96 0.02 IP3ECT 91.46% IP41 92.19% 15.56 IP3ECT 91.46% 141 DCA 17.27 16.29 15.56 IP40 2002 9.76 17.96 0.02 GASOUTT 332.09 HZPR 0.25 9.84 KCINASH 000 SULFUR 0.22 9.76 GASOUTT 332.09 HZO 37.18 9.949 GASOUTT 2551 KOEN 00 00 HTRET		JPM TE	EST SUN	IMARY			
NETIMU 340.3 TURBINE EFFICIENCIES GOVSTAGE 50.56% HP1 86.83% HP3ECT 80.09% IP41 82.20% IP2 98.16% IP2 91.46% IP41 82.20% IP2 98.16% IP2 92.19% IP41 82.20% IP5ECT 91.46% IP41 82.20% IP52 91.46% IP41 92.19% IP40 17.27 16.29 15.26 9.84 IP40 000 SUFUR 0.22 9.84 4.45 MCINASH 000 SUFUR 00 00 <td>DATE</td> <td></td> <td>#REF</td> <td></td> <td></td> <td></td> <td></td>	DATE		#REF				
TURBINE EFFECIENCIES COVSTAGE 50.56% HP1 86.83% HPSECT 80.09% IP2 98.16% IP3ECT 91.46% IP41 82.20% IP2 98.16% IP3ECT 91.46% IP41 92.19% HTTRE ATERS HTTRE 1112 LP1 92.19% HTTRE 1112 PSECT 91.46% IP41 92.19% HTTRE 011478 IP41 92.19% HTTRE 011478 IP41 92.19% IP42 91.41% IP42 91.41% IP42 91.41% IP42 91.41% IP42 91.52% IP43	GROSSMW		363.6				
GOVSTAGE 50.56% HP1 86.83% HPSECT 80.09% IP1 82.20% IP2 98.16% IPSECT 91.46% LP1 92.19% FEEDWATERHEATERS HTR61 HTR62 HTR63 HTR65 HTR66 TDD 20.02 9.76 17.96 0.02 -1.41 DCA 17.27 16.29 15.56 15.25 9.84 VCL 31.74 VCL 31.74 %CINASH 0.00 SULFUR 0.22 GASCUTT 332.09 H2O 266.3 AIRI INT 102.98 ASH 4.45 %Q2 1.82 FREDC 37.18 BIREFF 92.56 BTU 8915 HEEDWATERROW(KLBHR) 2561128 COAL MEASURED 300409 SHSRAY RLOW(KLBHR) 0 COAL CALCULATED 0 RHSRAY RLOW(KLBHR) 25581 % DIFF 0.00 HEAT RATES GASO NET 0.00 HEAT RATES SRAM	NETMW		340.3				
GOVSTAGE 50.56% HP1 86.83% HPSECT 80.09% IP1 82.20% IP2 98.16% IPSECT 91.46% LP1 92.19% FEEDWATERHEATERS HTR61 HTR62 HTR63 HTR65 HTR66 TDD 20.02 9.76 17.96 0.02 -1.41 DCA 17.27 16.29 15.56 15.25 9.84 VCL 31.74 VCL 31.74 %CINASH 0.00 SULFUR 0.22 GASCUTT 332.09 H2O 266.3 AIRI INT 102.98 ASH 4.45 %Q2 1.82 FREDC 37.18 BIREFF 92.56 BTU 8915 HEEDWATERROW(KLBHR) 2561128 COAL MEASURED 300409 SHSRAY RLOW(KLBHR) 0 COAL CALCULATED 0 RHSRAY RLOW(KLBHR) 25581 % DIFF 0.00 HEAT RATES GASO NET 0.00 HEAT RATES SRAM							
HP1 86.83% HPSECT 80.09% IP1 82.20% IP2 98.16% IPSECT 91.46% LP1 92.19% FEEDWATERHEATERS HTR61 HTR62 HTR63 HTR65 HTR66 TDD 20.02 9.76 17.96 0.02 -1.41 DCA 17.27 16.29 15.56 15.25 9.84 %CINASH 0.00 SLIFUR 0.22 -1.41 DCA 17.27 16.29 15.56 15.25 9.84 %CINASH 0.00 SLIFUR 0.22 -1.41 DCA 17.27 16.29 15.56 15.25 9.84 %CINASH 0.00 SLIFUR 0.22 -1.41		IURB		VCIES			
HPSECT 80.09% IP1 82.20% IP2 98.16% IPSECT 91.46% LP1 92.19% FEEDWATERHEATERS HTR61 HTR62 HTR63 HTR65 HTR66 TTD 20.02 9.76 17.96 0.02 -1.41 DCA 17.27 16.29 15.56 15.25 9.84 MCINASH 0.00 SLIFUR 0.22 -1.41 DCA 17.27 16.29 15.56 15.25 9.84 ARR INT 102.98 ASH 4.45							
IP-1 82.20% IP-2 98.16% IP-3ECT 91.46% LP-1 92.19% FEED-XTERHEATERS HTR61 HTR62 HTR63 HTR65 HTR66 TTD 20.02 9.76 17.96 0.02 -1.41 DCA 17.27 16.29 15.56 15.25 9.84 %CINASH 0.00 SUPCR 0.22 9.76 17.96 0.02 -1.41 DCA 17.27 16.29 15.56 15.25 9.84 %CINASH 0.00 SUPCR 0.22 9.76 GAS OUTT 332.09 H2O 26.63 1.41 %C2 1.82 RXEDC 37.18 1.82 BLREFF 92.56 BTU 8915 0.00 SHSFRAYRLOW(KLBHR) 2561128 COAL MEASLFED 390409 SHSFRAYRLOW(KLBHR) 25511 WET 0.00 HEATRATES GROSS NET 0.00 HEATRATES GROSS NET 0.00 HEATRATES 8909 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
IP2 98.16% IP3ECT 91.46% LP1 92.19% FEEDWATERHEATERS HTR61 HTR62 HTR63 HTR65 HTR66 TTD 20.02 9.76 17.96 0.02 -1.41 DCA 17.27 16.29 15.56 15.25 9.84 VCI 31.74 VCI 31.74 VCI 31.74 VCI 31.74 VCI 31.74 102.98 ASH 4.45 VCQ 1.82 FXEDC 37.18 BLREFF 92.56 BTU 8915 FEEDWATERROW(MEPHR) 2561128 COALMEASURED 390409 SHSFRAY FLOW(MEPHR) 25581 VCIF 0.00 FEEDWATERROW(MEPHR) 2551 VCIF 0.00 HISFRAY FLOW(MEPHR) 2551 VCIF 0.00 HISFRAY FLOW(MEPHR) 8246 8812 0.00 HISFRAY FLOW 8909 9521 0.00 HEATRATES 8909 9521 VCIF 0.00 FLANT 8909 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
IPSECT 91.46% LP1 92.19% FEED-XTERHEATERS HTR61 HTR62 HTR63 HTR65 HTR66 TTD 20.02 9.76 17.96 0.02 -1.41 DCA 17.27 16.29 15.56 15.25 9.84 %CINASH 0.00 SLIFUR 0.22 9.76 31.74 %CINASH 0.00 SLIFUR 0.22 9.84 %CINASH 0.00 SLIFUR 0.23 1.82 9.85 %D2 1.82 FXEDC 37.18 9.90409 %D2 5581 OCALOLICULATED 0 %HSFRAYELOW(MEHR) 2561128 OCALOLICULATED 0 %HSFRAYELOW(MEHR) 6 8212 1.82 0.00 HEANT 8209							
LP-1 92.19% FEEDWATERHEATERS HTR61 HTR62 HTR63 HTR65 HTR66 TTD 20.02 9.76 17.96 0.02 -1.41 DCA 17.27 16.29 15.56 15.25 9.84 %CINASH 0.00 SUFUR 0.22 GAS CUT T 332.09 H2O 26.63 AIRI INT 102.98 ASH 4.45 %Q2 1.82 HXEDC 37.18 BLREFF 92.56 BTU 8915 FEEDWATERRLOW(KLBHR) 2561128 COAL MEASURED 390409 SHSFRAY FLOW(KLBHR) 25512 % DIFF 0.00 FHATRATES GROSS NET 0.00 HATRATES S2581 WET 0.00 SHSFRAY FLOW(KLBHR) 8246 8812 0.00 CHANT 8309 9521 9521							
FEEDVATERHEATERS HTR61 HTR62 HTR63 HTR65 HTR66 TTD 20.02 9.76 17.96 0.02 -1.41 DCA 17.27 16.29 15.56 15.25 9.84 %CINASH 0.00 VCL 31.74 %CINASH 0.00 SULFUR 0.22 GAS CUT T 332.09 H2O 2663 ARI INT 102.98 ASH 4.45 %O2 1.82 BTU 8915 BLREFF 92.56 BTU 8915 FEEDVATERRLOW(KLB'HR) 2561128 COAL MEASURED 390409 SHSFRAYRLOW(KLB'HR) 25531 WDF 0.00 RHSFRAYRLOW(KLB'HR) 25531 %DF 0.00 HEATRATES KET 3809 9521 TURBINE 8246 8812 1.41 RUAT 8309 9521 1.41							
HTR61 HTR62 HTR63 HTR65 HTR66 TTD 20.02 9.76 17.96 0.02 -1.41 DCA 17.27 16.29 15.56 15.25 9.84 VCI 31.74 VCI 31.74 %CINASH 0.00 SLIFUR 0.22 GASCUTT 332.09 H2O 26.63 ARI INT 102.98 ASH 4.45 %Q2 1.82 RXEDC 37.18 BLREFF 92.56 BTU 8915 FEEDWATERRLOW(KLB/HR) 2561128 COAL MEAS_RED 390409 SHSFRAY RLOW(KLB/HR) 25581 %DIFF 0.00 HEAT RATES GROSS NET 0.00 HEAT RATES GROSS NET 0.00 HEATRATE 8909 9521 SUFF 1.54 RVER T 33.9 33.9 SUFF SUFF	LP-1		92.19%				
HTR61 HTR62 HTR63 HTR65 HTR66 TTD 20.02 9.76 17.96 0.02 -1.41 DCA 17.27 16.29 15.56 15.25 9.84 VCI 31.74 VCI 31.74 %CINASH 0.00 SLIFUR 0.22 GASCUTT 332.09 H2O 26.63 ARI INT 102.98 ASH 4.45 %Q2 1.82 RXEDC 37.18 BLREFF 92.56 BTU 8915 FEEDWATERRLOW(KLB/HR) 2561128 COAL MEAS_RED 390409 SHSFRAY RLOW(KLB/HR) 25581 %DIFF 0.00 HEAT RATES GROSS NET 0.00 HEAT RATES GROSS NET 0.00 HEATRATE 8909 9521 SUFF 1.54 RVER T 33.9 33.9 SUFF SUFF					ATTERS		
TTD 20.02 9.76 17.96 0.02 -1.41 DCA 17.27 16.29 15.56 15.25 9.84 VCL 31.74 VCL 31.74 %CINASH 0.00 SUFUR 0.22 GASCUTT 332.09 H2O 26.63 AIRI INT 102.98 ASH 4.45 %Q2 1.82 FXEDC 37.18 BUREFF 92.56 BTU 8915 FEEDWATERRLOW(KLB/HR) 2561128 COAL MEASURED 390409 SHSFRAY FLOW(KLB/HR) 25581 WDFF 0 RHSFRAY FLOW(KLB/HR) 25581 %DIFF 0.000 HEAT RATES GROSS NET 0.001 HEAT RATES GROSS NET 0.001 RUERT 8309 9521 9521 9521						HTR65	HTR66
DCA 17.27 16.29 15.56 15.25 9.84 VCL 31.74 %CINASH 0.00 SLIFUR 0.22 GAS CUT T 332.09 H2O 26.63 AIR INT 102.98 ASH 4.45 %Q2 1.82 FIXEDC 37.18 BLREFF 92.56 BTU 8915 FEEDWATERRLOW(MB/HR) 2561128 COAL MEASURED 390409 SHSFRAY FLOW(MB/HR) 25581 % DIFF 0.00 HEAT RATES GROSS NET 0.00 TURBINE 8246 8812 0.00 RVERT 33.9 5251 SUFF		TTD					
WCINASH 0.00 SUFUR 0.22 GAS CUTT 332.09 H2O 26.63 AIR INT 102.98 ASH 4.45 %Q2 1.82 HXEDC 37.18 BUREFF 92.56 BTU 8915 FEEDWATER RLOW(KLB/HR) 2561128 COAL MEASURED 390409 SHSFRAY RLOW(KLB/HR) 2551 WDIFF 0.00 HEAT RATES GROSS NET 0.00 HEAT RATES GROSS NET 0.00 TURBINE 8246 8812 8909 9521 RVERT 33.9 33.9 33.9 33.9							
%CINASH 0.00 SUFUR 0.22 GASCUTT 332.09 H2O 26.63 AIR INT 102.98 ASH 4.45 %Q2 1.82 FXEDC 37.18 BLREFF 92.56 BTU 8915 FEEDWATER FLOW(MLB/HR) 2561128 COAL MEASURED 390409 SHSFRAY FLOW(MLB/HR) 25581 COAL MEASURED 00 RHSFRAY FLOW(MLB/HR) 25581 %DIFF 0.00 HEAT RATES GROSS NET 0.00 TURBINE 8246 8812 8909 9521 RVERT 33.9 33.9 3.9		Dar		10.20			0.01
GAS CUT T 332.09 H2O 26.63 AIR INT 102.98 ASH 4.45 %Q2 1.82 FXEDC 37.18 BLREFF 92.56 BTU 8915 FEEDWATERRLOW(KLB/HR) 2561128 COAL MEASURED 390409 SHSFRAY FLOW(KLB/HR) 0 COAL CALCULATED 0 RHSFRAY FLOW(KLB/HR) 25581 % DIFF 0.000 HEAT RATES GROSS NET 0.000 TURBINE 8246 8812 2809 9521 RVERT 33.9 33.9 33.9 33.9	%CINASH		0.00				
AIRI INT 102.98 ASH 4.45 %Q2 1.82 FXEDC 37.18 BLREFF 92.56 BTU 8915 FEEDWATERRLOW(MLB/HR) 2561128 COAL MEASURED 390409 SHSFRAY FLOW(MLB/HR) 2561128 COAL CAL CULATED 0 RHSFRAY FLOW(MLB/HR) 25581 %DIFF 0.000 HEAT RATES GROSS NET 0.000 TURBINE 8246 8812 8812 FLANT 8909 9521 9521							
BLREFF 92.56 BTU 8915 FEEDWATERFLOW(KLB/HR) 2561128 COAL MEASURED 390409 SHSFRAY FLOW(KLB/HR) 0 COAL CALCULATED 0 RHSFRAY FLOW(KLB/HR) 0 % DFF 0.00 RHSFRAY FLOW(KLB/HR) 25581 % DFF 0.00 FEAT RATES GROSS NET 0.00 TURBINE 8246 8812 1.000 FLANT 8909 9521 1.000 RVERT 33.9 1.000 1.000	ARI INT		102.98		ASH	4.45	
FEEDWATERR.OW(KLB/HR) 2561128 COAL MEASURED 390409 SHISFRAY FLOW(KLB/HR) 0 COAL CALCULATED 0 RHSFRAY FLOW(KLB/HR) 25581 % DIFF 0.00 HEAT RATES GROSS NET 0.00 TURBINE 8246 8812 FLANT 8909 9521 0.00 RVERT 33.9 0.00	%02		1.82		FIXEDC	37.18	
REEDWATER FLOW(KLB/HR)2561128COAL MEASURED390409SHSFRAY FLOW(KLB/HR)0COAL CALCULATED0RHSFRAY FLOW(KLB/HR)25581% DIFF0.00HEAT RATESGROSSNET0TURBINE82468812FLANT89099521RVER T33.9	BLREFF		92.56		BTU	8915	
SHSFRAY FLOW(MLB/HR) 0 COAL CALCULATED 0 RHSFRAY FLOW(MLB/HR) 25581 %DIFF 0.00 HEAT RATES GROSS NET TURBINE 8246 8812 FLANT 8909 9521 RVERT 33.9				FLOWS			
RHSFRAY FLOW (KLB/HR) 25581 % DIFF 0.00 HEAT RATES GROSS NET TURBINE 8246 8812 FLANIT 8909 9521 RVER T 33.9	FEED/VAT	TERFLOW(KLB/HR)	2561128		COALMEAS	URED	390409
HEAT RATES GROSS NET TURBINE 8246 8812 FLANT 8909 9521 RIVER T 33.9	SHSFF	RAY FLOW(KLB/HR)	0		COALCALC	UATED	0
GROSS NET TURBINE 8246 8812 PLANT 8909 9521 RVERT 33.9	RHSPF	RAY FLOW(KLB/HR)	25581		%DFF		0.00
TURBINE 8246 8812 FLANT 8909 9521 RVERT 33.9			HEAT RAT	ES			
PLANT 8909 9521 RVERT 33.9			GROSS	NET			
RVERT 33.9							
	FLANT		8909	9521			
			00.0				
	DIVINEDO		1.30				

Figure 6 Example of Spreadsheet Summary Page

Consulting Services, Inc., presented a detailed paper on the functionality of ACM at the 1998 Heat Rate Conference. We will also be installing ACM on the Genoa PMAX system, once the conversion to NT is complete.

When we first started using ACM, the intent was to help the instrument technicians in reducing the number of periodic calibrations. We were finding several pieces of instrumentation that were being calibrated when they didn't need to be. What was really needed was a tool to assist the instrument technicians in determining when a piece of instrumentation needed calibration and if the instrument was starting to fail. To this end, we implemented ACM with approximately 260 input values. Each of these values was being scanned on 15-second intervals and analyzed over a 24-hour period. We found that the 24-hour period gave a good indication of failure or improper operation, it did not provide much information on long term trends.

Shortly after installation of ACM at the JPM plant, one of the performance staff noticed that one of the feedwater flow transmitters had failed. The plant had noticed the same thing and was trying to determine the time of failure. Using PMAX, a trend of both flow transmitters was displayed (Figure 7). The trends in Figure 7 show that one transmitter began to "straight line," thereby indicating the time of failure. Figure 8 shows a graph of the same data from the ACM program. The green line represents the failed transmitter and the yellow line represents the expected value as calculated by ACM. In this case, we would have been able to fill in appropriate data from ACM to backup the failed transmitter.

Another example of the use of ACM involved the West Primary Air Flow Transmitter at JPM. The plant had been experiencing some problems with this transmitter for several days. The operators claimed the unit was operating strangely at lower loads. A look at the ACM plots for the previous few days showed the West Primary Air Flow transmitter to be fluctuating between 200 KPH and its maximum of 531 KPH. The predicted value did not show this fluctuation, neither did the East Primary Air Flow Transmitter. Shortly after this fluctuation was noticed, the transmitter failed completely. This again is shown

Figure 7 PMAX Trend of Two Feedwater Transmitters

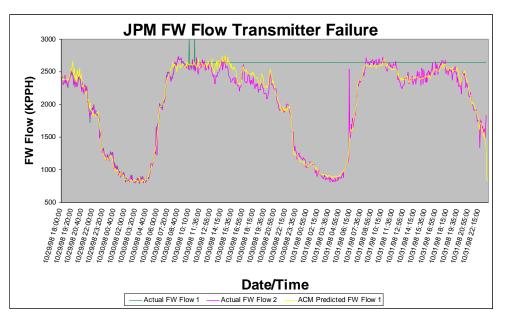


Figure 8 ACM Plot of Feedwater Transmitter

in Figure 9. At this time, we were just learning how to use the new system and didn't know what to be looking for. This incident showed how valuable a tool ACM can be, even with such definitive input as "the boiler is acting strangely at low loads."

ACM will not tell you what is wrong, but that something has changed. It is up to the experience of the operations, instrument, and performance staffs to determine what caused the change. This was illustrated when the operators took a heater out of service. We had not modeled any conditions with heaters out of service. As soon as the heater was taken out of service, we started getting discrepancies on feedwater outlet and drain outlet temperatures, as well as steam pressure. ACM didn't know what had happened, but knew a change from its modeled values had occurred. Looking at the data, we could tell exactly when the operators took the heater out of service.

We are currently in the process of developing several ACM models for trending. These models encompass three different time frames: every 24 hours, one to three months, and six months to one year. The 24-hour model is used to look at operational changes and/or tuning changes made within a couple of days. This information is helpful in identifying the effects in operational and instrument changes.

The modeling range of six months to one year is used to look at long-term trends. We expect to see indications of instrument drift and problems and be able to react to them prior to failure. The modeling is the same, but data is sampled once a week and then analyzed on a monthly basis.

The modeling range of one to three months is for intermediate effects and to closely monitor long-term indications.

We are also in the process of developing ACM models for performance indices. These will be used on both the intermediate and long term ranges.

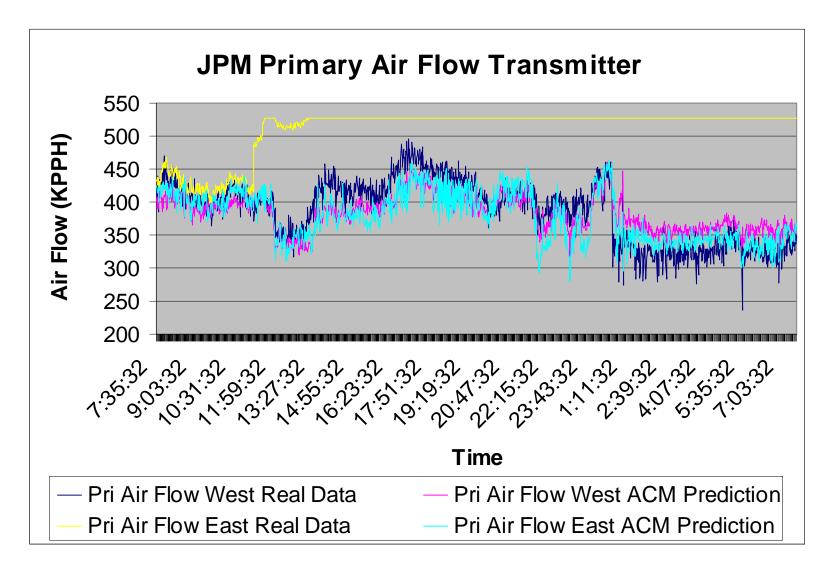


Figure 9 ACM Plot of Air Flow Transmitter