#### **R\*TIME Get Archive Data Clones**

Brent Young SCIENTECH, LLC

August 2004





#### **Get Archive Data Clones**

- GARCDATA.EXE (Get Archive Data) Program that retrieves and sends archive data to the R\*TIME Data Viewer.
- Why create a GARCDATA Clone?
  - A Non-R\*TIME Data archive exists for which you want to import data only for the purpose of trending.
  - The Clone will provide the ability to graph point data.
  - The data will appear to the end user as if it was coming directly from R\*TIME.
  - All Data Viewer graphical functions are available to manipulate the trends and graphs.





#### **5** Steps to Creating a GARCDATA Clone

- 1. Start with the existing GARCDATA workspace and files.
- 2. Replace the names of the workspace and files to the executable name that you want using global replace calls in Notepad.
- 3. Create copies of the Archive Request and Response Buffers.
- 4. Create and call your own function that will fill the Archive Response Buffer.
- 5. Merge your Archive Response with the normal response.





## Step 1. Start with the Existing GARCDATA Workspace and Files

- Select a new name for the executable.
- Copy the GARCDATA workspace and files to a new folder with the selected name in the %RTIMEHOME%\src directory.





## Step 2. Replace the Names of the Workspace and File

- Rename the workspace, project file, GARCDATA.c file, and the GARCDATA.rc file to the new name.
- Open each file in sequence and globally replace the GARCDATA name with the new name.
- Open the Workspace in Visual Studio.





# Step 3. Create Copies of the Archive Request and Response Buffers

- Create a new instance of Arch\_Response\_Ptr.
- Create a new instance of Arch\_Request.
- Just before the program calls arch\_request(), copy the system Arch\_Response\_Ptr, and Arch\_Request to your new instances of these pointers.





### Step 4. Create and Call Your Own Function that will Fill the Archive Response Buffer

- Create your function that will use the request as an input and the response as an output.
- Process the request by gathering the point names, the start and end times, and the frequency of the request.
- Gather the data from the data source and stuff the response buffer with the data until either the request is fulfilled, or data is no longer available.
- Return the response buffer.





## Step 5. Merge Your Archive Response with the Normal Response

- Merge our Archive Response with the normal archive response.
- The normal arch\_request(), takes care of all the little intricacies of the response, so all we have to process in the merge are:
  - The point status.
  - The point value.
  - If the data for the requested time stamps are valid.





#### **Process Complete**

Normal Processing handles shipping the response back to the viewer so we are done and we should now have valid graphical data.



