

Thermal Performance Indicators (TPI) Monitoring and Reporting Enhanced Using PEPSE

Wen Wang

Performance & Testing Department Ontario Power Generation 25-January-17

OPG - Who and Where We Are

- Ontario's clean power producer
- Approx. 17,000 MW generating capacity
 - 65 hydro, 3 thermal (including 2 biomass), 2 nuclear stations
 - 2 co-owned gas-fired stations
- 2 nuclear stations leased to a private generator
- Produce about 50 per cent of Ontario's electricity
- About 9,200 regular employees
- Over \$44 billion in assets
- Moderate overall price of power

Clean, Reliable, Low-Cost

- Province's clean energy provider more than 99% free of smog and greenhouse gas emissions.
- Produce majority of power homes, hospitals, schools, businesses rely on every day.
- Provide consumers with lower cost power than other generators.
- Our profit goes back to the province.
- Investing hundreds of millions in clean and renewable power.
- Successful closure of our coal stations represents North America's largest single climate change initiative.
- Strive to ensure efficiency, value for money.

The Company We are Today

- Our history includes more than 100 years of operation.
- Commitment to public, environmental and employee safety.
- Values set out in a Code of Conduct safety, integrity, excellence, people and citizenship.
- Building long-term mutually beneficial relationships with Indigenous communities.
- Enjoy strong relations with site communities.
- Focused on continuous improvement and development in project management and operational excellence.
- Environmental Management System registered to ISO 14001 standard.

Nuclear Operations - Darlington

- One of the top-performing nuclear stations in the world.
- Four-unit station with a total capacity of 3,512 MW.
- Serves about 20 per cent of Ontario's electricity needs – or a city of two million people.
- In 2015, OPG received a 10 year operating licence for Darlington from the CNSC- the longest ever granted to a Canadian nuclear power plant.
- OPG Nuclear is rate regulated through a transparent, public process.

Nuclear Operations - Pickering

- Six operating CANDU reactors.
- Total output of 3,100 MW, enough to serve a city of 1.5 million people.
- Recognized across the industry for safety.
- In 2015, Pickering supplied about 14 per cent of Ontario's power while achieving its highest level of reliability.
- In 2013, Pickering's operating licence was renewed for five more years of operation.

Introduction – TPI Program

- TPIs including Thermal Performance Indicator (TPI), Turbine Cycle Efficiency (TCX), the Condenser Vacuum Efficiency (CVE), Thermal Power Error (TPE), and Non-Productive Load (NPL) are monitored and reported routinely (three times a week).
- As a Scientific, Engineering and Safety Analysis (SESA) software for engineering support, it should be SESA certified. National standard CSA N286.7 and company procedures applies.
- Independent TPI calculations are executed to cross check the results.
- Two methods: Curve-method; PEPSE-method
- Performance analysis and MW accounting will be performance engineer's focuses.
- TPI Program Automation and historical performance database are required. All features including PEPSE OLE automation are integrated together using convenient Excel spreadsheet.

Key TPI Calculations

Thermal Performance Indicator (TPI)

 $TPI = \frac{Actual \text{ overall unit efficiency}}{Design \text{ overal unit efficiency}}$

• Turbine Cycle Efficiency (TCX) and MWe Loss

 $TCX = \frac{Actual turbine cycle efficiency}{Design turbine cycle efficiency}$

Condenser Vacuum Efficiency (CVE) and MWe Loss

 $CVE = \frac{Patm - Pcnd}{Patm - Pdesign}$

Thermal Power Error (TPE) and MWe Loss

TPE = <u>Measured Reactor Power (by DCCs)</u> - ActualReactor Power (Calorimetric Heat Balance) Actual Reactor Power (Calorimetric Heat Balance)

MWe Loss = (TPE × Reference Reactor Power) × Reference Unit Overall Efficiency/10000

Non-Productive Load (NPL) and MWe Loss

 $\label{eq:MWeLoss} MWe\ Loss = (Actual\ NPL\ prorated\ to\ 100\% - Reference\ NPL) \times Actual\ Turbine\ Cycle\ Efficiency/100$

Data Collection - DCC Data

- Calorimetric test
 - Controlled test (as steady as possible) performed three times a week
- DCC
 - Dependent on the Digital Control Computer (DCC) system to retrieve required data (around a hundred measurement points)
 - Data validation
- Interfaces
 - ✓ Input the Dates corresponding to the calorimetric test. DCC data will be updated for the time corresponding to the test.

Data Collection – Manual Inputs

- Correction factors
 - $\checkmark\,$ The total feedwater flow
 - Deaerator Mass and Energy Balance (DAMEB) tests carried out every four years
 - Ultrasonic flow measurements annually
 - ✓ Feedwater temperatures, reheater drains flow and temperature
 - Precision measurements using calibrated instruments.
 - ✓ The above values are used in deriving the boiler thermal power, which is an input into the PEPSE model.
- Corrections applied to DCC measurements when suspect measurements cause the PEPSE models to non-converge

- Generator Terminal Output (GTO) vs net boiler power
- GTO vs CCW inlet temperature at 100% FP
- GTO vs condenser pressure at 100% FP
- Condenser pressure vs CCW inlet temperature at 100% FP
- A general polynomial relationship to represent the curves

 $\checkmark Y = A7 * X^7 + A6 * X^6 + A5 * X^5 + A4 * X^4 + A3 * X^3 + A2 * X^2 + A1 * X^1 + A0$

- Where Y = calculated result of the function
- X = function variable

A0 to A7 = coefficients

PEPSE Method – Simplified Turbine Cycle

PEPSE Method - PEPSE Model

PEPSE Method – PEPSE Model Sets

 Five cases to simulate different plant conditions with different boundary conditions

Case #	Case Description	Purpose				
1	Performance Mode	 Simulate the design turbine cycle using PEPSE Performance mode Based on the design heat balance . 				
2	Design Mode	 Simulate the design turbine cycle using PEPSE Design mode Tune unit performance to actual reference of output of 932.6 MWe, lake water temperature of 12 °C, condenser pressure of 5.04 kPa, reactor power at 100% FP 				
3	Design Mode (TCX)	 Simulate of the design turbine cycle using the Design Mode with the exception of the condensers, which is in the performance mode, at the defined station measured condenser pressure. Use the simulated output in the TCX calculation 				
4	Design Mode (TPI)	 Simulate the design performance of the turbine cycle. Use the simulated output in the TPI and CVE calculations 				
5	Performance	- Simulate actual performance of the major components at conditions including process steam consumption and equipment out of service through setting up a series of controls				

PEPSE Method -

Object Linking and Embedding (OLE) Automation

- The use of PEPSE is automated through the spreadsheet program for the routine calculations.
- The PEPSE five cases used for TPIs calculations are automated.
- The automation controller (Microsoft Excel) uses a scripting language Visual Basic for Applications (VBA)
 - ✓ Collect data
 - ✓ Send data to a PEPSE model
 - ✓ Run model calculations
 - ✓ Show model results
 - \checkmark Save data and results to database
 - \checkmark Use steam tables

User Interfaces

The execution time for the software is expected to be typically in the order of a few minutes, for reporting occurring once a week.

Execution of PEPSE Analysis

The execution time for the PEPSE analysis for all for units is about 40 seconds.

fodet:	DNGS-TPS-V89LMCE	Job:	P4,00	Result	Pares			
	Helt & DEDEE Madel Appleals	HODE	TEDARLATION		8/14/10/46 1-02			
	Unit & PEPSE Model Anarysis	10,0400	TEAMINATION .		BC31/2019 1.0/		THE R. P. LEWIS CO., LANSING MICH.	
	Terre	Unit	DCC Carve Mathinal	Case 3. Actual GP	Case J Actual CCW11	Cane 5 Actual	DH-S	Equipment Operation Costributes
	Actual GTD	Mile	-	The second second	PLYSE Analysis Complete			
	Adusted Gross Generator Dutout	Mille	-		Model Te	rmmation Sta	64	
	Feet Terro HX5A	Den C						
	Feed Terro HX58	Den C			Unit 1: Nomial Termination			
	Feed Temp H05	Des C		-	Unit 2: Normal Termination Unit 2: Normal Termination Unit 4: Normal Termination			
	Feed Flow - Total	kols.						
	Rohester Flow - Total	kola			Choose a Unit or the main screem to activate.			
	Boder Blow Off Flow - Total	kala						
	LIPW Flow - Total	ko/a			-			and the second se
	Sum of FW 2nd RH Drain LFW	ka/s		-	Dett	1 Un	it 2 Unit 3	Holt 4
	Main Steam Flow	ka/s		-				
	Measured Cond Press	kPaa	***	*1*		and the second se		
	Ideal Cond Press	kPaa					1 bJam	
	CCW inlet (lake) temperature	Dep C				-	The second se	
	Total Calorimetric Boiler Power	MWth						
	% Boiler Preser							
	Calorimetric Reactor Power %	- 54						
	FIRICH based reactor power	14						
	Calorimetric - FINCH power	-						
	TCX	- 16		-				
	CVE	- 14				-		
	TPI	5			15.00	-		
	Condensate Flow	ko/s		-	-	-		
	Condenser Cleankness Factor	-						
	Main Steam Press	kPaa				-		
	MSR Drain Flow - Total	kg/s	-	-			1.00	
	HX5 Drain Flow - Total	kg/s	- 140	-				
	HP inlet Press	kPaa				-		
	HP Outlet Press	kPas		-				
	BPI South Cheven SCOOPTus	an an	Tel I	1000	**	00	HOPCAL ALLE DO	ATTE OF ACTION ATTE
-	PALINER, CHARTER, REPORTING	-		CLW	AT LONG IN		and all the	ALL PLACE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL

Execution of PEPSE Analysis

Results and Data Storage, Trend Plot

- Spreadsheet databases
 - $\checkmark\,$ Calculated results and input data
 - $\circ~$ Current database save all the data of the most recent five years
 - Historical database save all the years data
- Trend plots monitoring, analysis
 - ✓ All raw data
 - ✓ Calculated results
 - ✓ The X-axis & Y-axis
 - \circ a time or any other data points of the database.

Output Report

- TPI Weekly Report the key output of the software
 - ✓ A summary of the key thermal performance indicators
 - ✓ Megawatt loss accounting,
 - ✓ Condenser ball cleaning updates
 - ✓ Actions assigned to each unit to recover the lost megawatts.
- Colour-coded grading for the calculated TPI, TCX, CVE, TPE, NPL

Indicator	Green Excellent	White Nominal	Yellow Marginal	Red Unsatisfactory
TPI	TPI ≥ 99.5%	99.0% ≤ TPI < 99.5%	98.5% ≤ TPI < 99.0%	TPI < 98.5%
тсх	TCX ≥ 99.75%	99.5% ≤ TCX < 99.75%	99.0% ≤ TCX < 99.5%	TCX < 99.0%
CVE	CVE≥99.75%	99.5% ≤ CVE < 99.75%	99.0% ≤ CVE < 99.5%	CVE < 99.0%
TPE	-0.25% ≤ TPE≤ +0.25%	-0.50% ≤ TPE≤ -0.25% Or +0.25% < TPE≤ +0.50%	-1.0% ≤ TPE< -0.50% Or +0.50% < TPE≤ +1.0%	TPE< -1.0% Or TPE> +1.0%
NPL	NPL≤ +0.1%	0.1% < NPL≤ +0.3%	0.3% < NPL≤ 0.5%	TPE> 0.5%

TPI Report Example

PEPSE Application

PEPSE Expected MWE @Actual CCW t1 and actual BP-Case 5

Software Attributes

- Functionality
 - ✓ Executed on Standard Windows7 Office Computer
- Reliability
 - $\checkmark~100\%$ reliable when station LAN is available
- Usability
 - ✓ Require minor training
- Maintainability
 - $\checkmark\,$ Performed in the Microsoft Excel interface as well as VBA coding
- Portability
 - $\checkmark\,$ Require the station Windows 7 LAN environment.

Main Interfaces

- System Interfaces
 - ✓ DCC system, PEPSE software
- User Interfaces
 - ✓ Manual inputs including correction factors, dates, etc
- Hardware Interfaces
 - ✓ Minimum standard issue Windows 7 Office Computer
- Software Interfaces
 - ✓ Microsoft Excel embedded with VBA as well as PEPSE model

Thanks!

