

Developing and Validating Load and Heat Rate Correction Curves Using PEPSE

Greg Alder

Background

- Load and Heat Rate Correction Curves
 - Important to a thermal performance program
 - Thermal performance reports
 - Assist in accounting for lost generation and heat rate
 - PTC 6 turbine warranty testing

Load and Heat Rate Correction Curves

- Turbine vendors typically provide updated thermal kits, heat balance diagrams and correction curves in conjunction with uprates and major plant modifications.
- Validation of these curves is often critical to ensure the utility is obtaining the best representation of corrected generation.
- Correction curves used for periodic thermal performance reporting, PMAX controllable losses and lost generation accounting.
 - Actual values (i.e. throttle pressure, condenser back pressure, etc.) are compared to design or best achievable targets.
 - Deviation between actual and target values are entered into the correction curves.
 - Results from the curves are used to calculate corrected generation and heat rate and subsequently lost generation and heat rate.

Sample Load Correction Curve

4 | March 23, 2017 | © Curtiss-Wright

Curve Validation

- Vendor load and heat rate correction curve issues
 - "Boiler plate" curve provided
 - Error in the curve resulting from incorrect assumptions
 - Curve not provided by the vendor
 - Not used in warranty testing
- Independent creation of correction curves can be performed using PEPSE
 - to validate the vendor provided load correction curves
 - to generate a desired curve not provided by vendor

Curve Validation Methods - Software

- Detailed PEPSE model of the generating unit is developed
 - Model is "Load Generalized" to operate from VWO down to low load (25-50%) to generate multivariate curves often provided by vendors (i.e. condenser back pressure load correction curve)
- Model is benchmarked against the vendor provided heat balance diagrams to ensure accuracy and repeatability
- Curves are generated using the completed model
 - Conventionally using the software or
 - Using spreadsheet interface to the modeling software

PEPSE - Methods to Generate Curves

One result at a Time

- Enter a value (i.e. throttle pressure), observe resulting generation, repeat
- Very time consuming, potential for user entry errors

Stacked Case Study

- Time consuming to setup studies for a set of curves

Sensitivity Study

- Fast and convenient
- Has curve export feature
- Uses PEPSE "Save Case" feature, potential to have issues with results
- Excel to PEPSE Automation Link Historical Approach
 - Typically done one curve at a time.
 - Convenient but can be time consuming to generate a set of curves

Newer Method to Validate Correction Curves

- Excel to PEPSE Automation Link Updated Approach
 - Visual Basic used to generate the complete set of curves at one time
 - User:
 - Enters PEPSE model name and directory
 - Puts in a list of desired load and/or heat rate correction curves
 - Presses a button to setup the curve templates
 - Executes PEPSE and generates the curve set

X -	₩7 - (% - =		_			MW_HR_Eff	ects.xlsm -	Microsoft Excel								X					
File	Home Insert	Page Layout	Formulas	Data Review	w View	Developer	R*TIME								۵ 🕜	- 6 23					
Paste	Cut Copy → Format Painter Clipboard	al <i>I</i> <u>U</u> - Ent	• 10 • A A A		Alignmen	📑 Wrap Text 🚂 Merge & Center It	Gener	ral → % • 5.0 500 Number 5	Conditiona Formatting	I Format • as Table • Styles	Cell Styles *	Insert [Delete Format Cells	∑ AutoSum Fill ▼ Clear ▼ E	Sort & Fi Filter * Se	nd & elect +					
	M36 • (*	f _x												4		~					
1	A Curve Title:	B Name Exte	C ension: Unit:	D Model Pre	E epared By	F y: # of PEPS	E cases	G # of Compone	ents		Z Axis \	J √ariabl	K	L	M						
2	PEPSE Model:	C:\PEPSE	1 G. Alder 1 8 bkgros											-							
4		•	Curve Result Variable 1:																		
5 6 7 8 9 10 11 12 13 14	Run PEPSI Create Workshe Create Print Pag	E Entre Sele eets Inpu ge Cor	Enter global curve and PEPSE model information on "SELECT" tab. 0 Select the PEPSE model to use for the runs using the "PEPSE Model:" button. 0 Input information for desired PEPSE runs on "COMPONENTS" tab. hrcyc Configure the 4th worksheet as a template for all other components. Hide PEPSE Calculations:																		
14 15 16 17 18 19 20	Delete Workshe	eets "Ru "Cre "CC "Cre	"Create Worksheets" to copy template to all other components. "Run PEPSE" to perform PEPSE runs as defined on "SELECT" and "COMPONENTS" tabs. "Create Print Page" to transfer data from component sheets to "PRINT" sheet.																		
21 22 23 24	Check Print Outputs	Ma	Manually configure columns F:O on the "PRINT" tab.																		

Curves Tab – Enter Desired Curves

X	7	• (= • :	-						MW_H	R_Effects	- Copy.xlsn	n - Microsoft E	cel								1 ×
File		Home	Insert	Page Layo	ut Formula	s Data	Review	View	Develo	per	R*TIME									۵ 3	
Ê	Å	Cut Copy ₹	A	rial	- 10 - <i>J</i>	A^ A [*] ≡	=	≫~- ≣	Wrap T	ext	Genera	I	•	5		÷.			Σ AutoSum		N
Past	e 🛷	Format Pai	inter	8 <i>I</i> <u>U</u> -	H • 🕸 •	<u>A</u> · ≡	: = =	te te 🖬	Merge	& Center	- \$-	% •	Format	ting * as Table *	Styles *	insen	Delete	e Format	🖉 Clear 🔻	Filter * Se	lect *
	Clipb	board	5	I	ont	15		Alignment			F2	lumber	F2	Styles			Cells		E	Editing	
-	F	P63	• (f_x		-		1	1-0-0-0				Y	11	-					-	~
24	A	0	В		Component	D	E	F	G	H	V Avia	J V Avia	K 2rd V	2rd V	N	Λ	N	0	Р	Q	R
1	#	Comp	onent D	escription	#	Offset	Type	Increment	Skip?	Steps	Variable*	Component	Variable	Component		Run	PEF	SE			
2	1	Co	ndenser	HP BP	475	-1.00	PPSH	-0.5		8		3							-0.		
3	2	Co	ondense	IP BP	470	-1.00	PPSH	-0.5		6		3				Compor	ent#"	is the co	mponent nur	mber in the	
5	4	2nd St	to Scave	nging Flow	695	20940.00	WWFIXB	10000		6	ww	696	-		- P	EPSE mo	del.				
6	5	1st St	tg Scave	nging Flow	645	12000.00	WWFIXB	5000		7	WW	646				Initial O	ffcot" is	thoyalı	in that is subt	tracted from	
7	6	2n	d Rehea	ter TTD	205	10.00	TTDIRH	5	-	5	OPVB	110		-	ti	he curre	nt valu	e in PEPS	SE to start the	run.	
9	8	M	S Effecti	veness	630	0 10	FEMOSX	0.01		5	OPVB	120			-						
10	9	Top H	leater E:	xt Line DP	101	0.020	OPVB	0.005		10	PP	4				Variable	Type"	is the va	riable the ma	acro will	
11	10	T	op Heate	er TTD	930	3.00	TTD	1		8	TTDOUT	930			0	verwrit	e in the	PEPSER	nodel.		
12	11	Moistur	op Heate	er DCA	930	0.002	TISOSG	0 002	-	11	XX	930 610				Increme	nt" is t	he interv	al that the m	acro will us	e
14	13	Th	nrottle Pr	essure	300	25.87	PPVSC	5		11	PP	610			b	etween	the ru	ns. It sho	ould be calcul	ated so that	
15	14	E	Blowdowr	Flow	10	0.00	WWBLDN	31860		10	WW	56			t	he "zero	point"	is in the	middle of th	e run.	
16												0		-		skin?" d	otormi	noswha	ther the macr	owillrup	
18												2. 3			t	hat com	ponent	t.	the memoria	owninun	
19																					
20		78 54										9									
22						1															_
23					315			201	N9-	50		20	a.	300							=
24																					
26																					
27															*	Op	tional,	if blank,	will use colun	nns E,C	
28																					
30																					
31																					
32																					
33																					
35																					
36																					
37																					
39																					
40																					
41																					
42																					
44																					
45																					
46														.,							-
14 4	► H	SELECT	COMP	ONENTS / P	RINT / Conde	enser HP BP	Conde	enser IP BP	Cond	lenser LI	BP / 2r	nd Stg Scaveng	ing Flow	/ 1st Stg Scav	/enging	Flow	2nd F	Reheater	TTD / 1st R		

Create Template Worksheets

🔏 Cut	Arial		- 10	- A	≡	= =	\$2.v	Wrap 1	ext	General	¥			Norr	nal FWH	Norn	nal	Bad		God	bd	12		• 3	< 1	Σ Aut	toSum *	AT	40
Copy -	в	7 U -		3 - A				-a- Merge	& Center *	\$ - % ,	€.0 .00	Conditio	nal Format	Neu	tral	Calc	ulation	Chec	k Cell	Exp	lanator	· · · ·	Inse	ert Dele	te Forma	t Fill	-	Sort &	Find
Format Painter			ont	-	- -		Alianm	ent	IS.	Number	100 910	Formattir	ng ∗ as Table	*			Styles					· .		Cell	۲	2 Clea	ar + Edi	Filter *	Select
R111	- (6	fx	1																										
A ondenser HP BP	в	C	D	E	F	G	н			J	К	L	M	N	0	P	Q	B	S	T	U	٧	V	X	Y Z A	A AB	AC	AD	AJ
ondenser HP BP			LOAD	S (7)			10	ondenser HF	BP (in hea)			LOADS	(2)																
	-		LUAD				Ľ	ondenser in	0 0000	0	0	0	0	0	0														
			8				1		0.0000	0.0000				ŝ															
			Ś				1		0.0000	0.0000				ŝ															
	-		8						0.0000	0.0000				ŝ															
	-		8						0.0000	0.0000	-	-		-	-														
					_	-						-		-															
	-				_							-																	
			j.																										
			39 1				i i					-																	
	1			1		1			NE DE CONTRACTO - 10																				
HB	- 1		LOADS	s (%)	1		C	ondenser HF	BP (in hga)	0	0	LOADS	(%)	0	0														
	_								0.0000	0.0000																			
			Ĩ.						0.0000	0.0000				_															
	-								0.0000	0.0000					-														
	-		2		-	-			0.0000	0.0000		-																	
1									0.0000	0.0000																			
			2																										
			2							8																			
	3		8							2																			
	- 2		2		1						6	4																	
	Con	denser HP	BP	MW						Conden	ser HP BP	HR																	
	CON	denserin						1 0000																					
1.00							_	0.9000																					
0.90								0.8000																					
0.80								0.7000																					
0.70						22		2 0,6000																					
0.60								1 0.5000 -																					
0.50								별 0.4000 -																					
0.40						-		B 0.3000																					
5 0.30								E 0,2000						20															
0.20						19		0 1000																					
0.10							1	0.0000					<i>a</i> :																
0.00	-							0.00	0.2	0.40	(0.60	0.80	1.00															

Run PEPSE – Generates Curve Set

Vendor Curve Sample – Condenser Back Pressure

Curve Comparison Discussion – Condenser Back Pressure

Validating Curves – Vendor Curves Placed into Excel

- Use a curve digitizing product such as GetData Graph Digitizer
 - Each vendor correction curve is quickly and accurately placed into Excel for comparison to the PEPSE generated curve
 - Open a graph
 - Set the scale (coordinate system)
 - Digitize (automatically or manually) and
 - Export data to Excel

Validating Curves – Digitized Load Correction Curve

16 | March 23, 2017 | © Curtiss-Wright

Validating Curves – Curve Comparison

X 🖬 🤊 • (° • 1	Ŧ										MW	_HR_Effect	s.xlsm - Micr	rosoft	Excel		-											- 0) X
File Home	Inser	Pa Arial	ge Layout	Fo	rmulas	Data R	eview	View	Developer R*T	General	-			No	rmal 2	Nor	mal FWH	Normal		Bad			+	. 🖽		Σ AutoS	um • A		
Paste		BI	U - 🗆		3 - A -	= =		-	Merge & Center *	\$ - % ,	•.0 .00 •.0 •.0	Conditio	nal Format	Go	od	Neu	utral	Calculat	ion	Cheo	ck Cell	-	Inser	Delet	e Format	Fill *	So	ort & Fir	ind &
 Format Pai Clipboard 	inter G		Font		5		A	lignme	nt G	Number	100 010	Formatti	ng * as Table ·				Styles					- ·	-	Cells	-	2 Clear	Editing	lter ≠ Se g	lect *
T107		(=	fx																									-	
A 1 Condenser HP BP	E		С	D	E	F C	i H		F	J	К	L	м	N	0	P	Q	R	S		T	U	٧	V	X	Y Z AA	AB	AC	AD 1
2 Condenser HP BP					3 (%)			6	ondenser HP RP (in hea)	n		LOADS	(7)																
4	1284	.33	1	.0702		1	-	Ĕ	1 aga	1284.332	0	0	0	0	0														
6 2.7600 7 2.2600	12	90.53		_		-			-0.500	0 0.482	6 n																		
8 3.7600 9 4.2600	12	79.03			5				0.500	0 -0.412	5		1																
10 4.7600 11 5.2600	12	70.27				-		-	1.500	0 -1.095	0																		
12 5.7600	12	63.14		_				-	2.500	0 -1.649	9		3																
14	1			_		3		-		8																			
16																													
18				_		-				2																			
20			1																										
22 HB		_		OADS	5 (%)		_	C	ondenser HP BP (in hga))		LOADS	(%)																
23 24 -2.2600	94	18.52					_		1.0000	1284.332	4	U	U	U	U														
25 -2.7600 26 -3.2600	94	52.92)8.58	1	_		-			0.500	0 -0.480 0 0.000	3																		
27 -3.7600 28 -4.2600	95	47.97 32.72	1				_		-0.500	0 0.414 0 0.779	3																		
29 -4.7600 30 -5.2600	96	13.87 42.15	1	_		-			-1.500	0 1.1073 0 1.404	7																		
31 -5.7600 32	96	68.10	1				_		-2.500	0 1.677	6																		
33 34						-				-																			
35 36	-					-	_					-			3														
37 38			1				_										v	endor MV Co	orrection										
33 40 41 42		Conde	nser HP BP	1	MW					Conder	nser HP BP	HR						BP 2.11E+00 2.68E+00 3.08E+00	Load Cl 9.82E 5.44E 1.65E	hange -01 -01 -01									
43 1.5								-	2.5									3.45E+00 3.90E+00	-1.62E	-01 E-01									
46 1.0		*						-	2.0				/					4.30E+00 4.69E+00	-8.04E	e-01 +00									
48 0.5								-	1.5				-					5.22E+00 5.91E+00	-1.50E -1.97E	+00									
49 🖉 0.0								-	R 1.0			-					¥.	endor HR Co BP	rrection HR Ch	ange									
51 10 000			×					-	0.5		/	-		PE	PSE			2.07E+00 2.75E+00	-1.02E	+00 E-01									
53 O -0.5 -				-			Vendor							Ve	ndor			3.21E+00 3.74E+00	-4.96E 3.61E	-02									
55 5 -1.0 -					X				8									4.24E+00 4.83E+00	7.61E	-01									
57 O -1.5								-	5 -0.5	/								5.44E+00 5.90E+00	1.64E- 1.98E-	-00 -00									
59 60 -2.0				1					-1.0				0																
61 10 62 -2.5	1.5 2	0 2.5	3.0 3.5	4.0	4.5 5.0	5.5 6.0			-1.5	0 25 20	25 40	45	0 55 9	0															
63 64 65		Cond	enser HP BP (in hga)					10 10 21	Condense	rHPBP (in hg	: د . (a)	.u 32 0.																
66	COM	PONEN	TS / PRIN	TC	Condenser		Condense	er IP B	P / Condenser LP BI	P 2nd Stg	Scavenging	Flow	1st Stg Sca	ivengi	ng Flow	2nd Re	heater TTD	/ 1st Rehe	eater TT	D	IS Effec	tiveness	Top	Heate	r Ext Line	DP / 4		110	•

Validating Curves – Curve Comparison

Other Curves

This approach can also be used to generate expected target conditions

Sample Target Curve – Expected Back Pressure

Summary

- Correction and other curves can be quickly created using PEPSE in conjunction with Excel and VB macros
- The resulting curves can be compared to vendor provided curves to determine accuracy
- Additional curves not provided by the vendor can be created for load and heat rate correction and for expected best achievable target values

