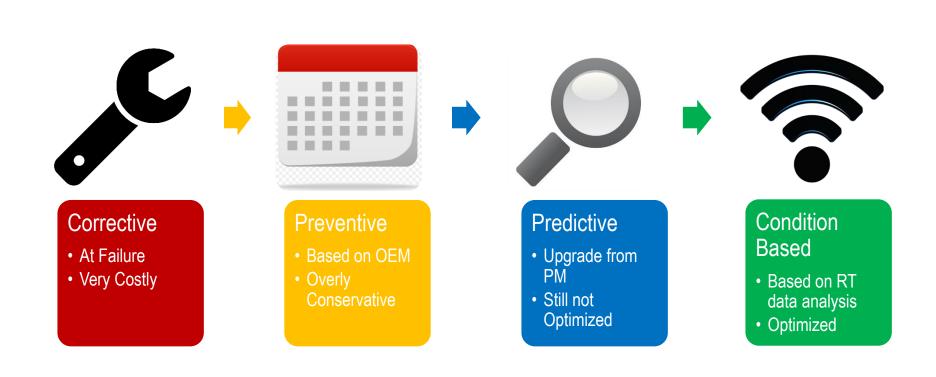


CW Wireless Network, Adv Analytics, and CBM

Product Overview



1 | May 3, 2017 | © 2017 Curtiss-Wright, Proprietary and Confidential

Maintenance Types

Condition Based Maintenance

- Most cost effective form of maintenance
 - Only performed when real-time data provides indication of future failure
 - Scheduling of maintenance can be planned around next expected outage and parts procured in advance
 - Removal of time-based PMs
 - Less potential for human error
 - Only touch equipment when directed by data
 - Adjusts for variations in operating and seasonal conditions

Why haven't we done Condition Based Maintenance Before?

- More costly than PMs to set up
- Need additional data that was not easily available / costly to obtain
- Advanced Analytical tools required too much information and were difficult to perform in real time
- Integration of data with maintenance, operations and engineering to allow for a controlled approach was difficult

How do we overcome these barriers?

- Collect more data
 - Additional sensors
 - Continuous Monitoring
 - Additional Sensor types

Wireless – Collecting More Data

- Removes the costs of running wires throughout the site
- Allows for real time monitoring of systems that were previously intermittently monitored
 - Operator Rounds
 - System Engineering Walkdowns
 - Localized recorder data
- Additional Sensor types can be deployed in the field that were not originally installed
- Short term or Fix-It-Now data collection and analysis can now be done cost effectively

Curtiss-Wright Wireless Sensor Network Product

Power Consumption

- Ultra low power consumption enables battery only operation for greater than 2 years
- Low power consumption enables energy harvesters to sustain battery for essentially unlimited periods

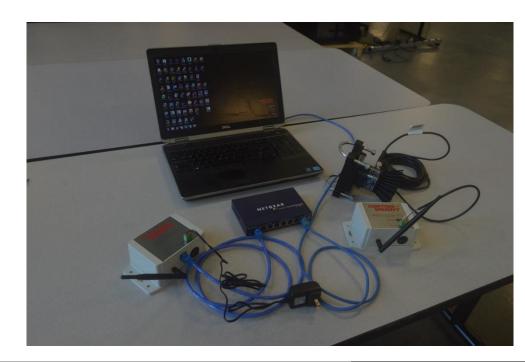
EMI / RFI Interference

- Low Susceptibility / Ability to operate in noisy RF and EM environments
- Controlled Emissions / Ability to operate without affecting other nearby electronic equipment

Curtiss-Wright Wireless Sensor Network Product

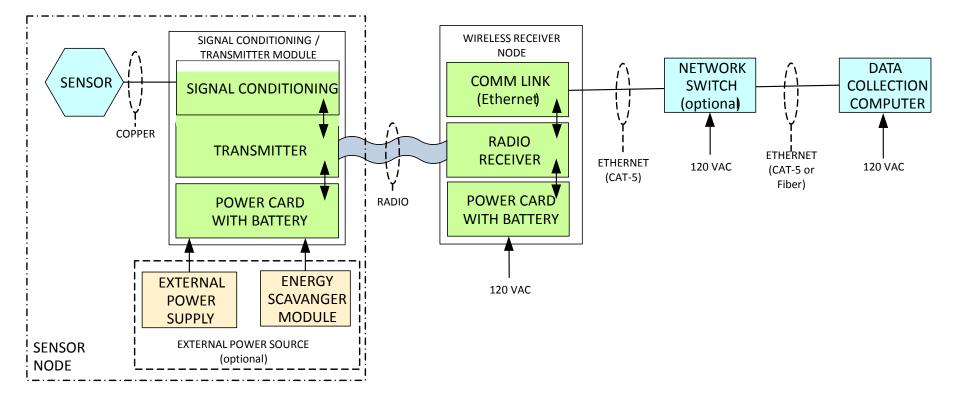
Cyber Security

- Continuous online communication diagnostics
- 256-bit encryption
- One way data transfer
- Configuration by secure plant tools
- Product managed to industry requirements
 - Implement standard COTS components
 - Configure to support current and future power generation standards
 - Design for operation in typical power generation physical environments

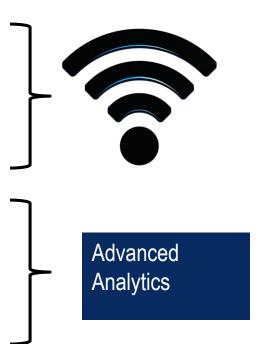

Typical use

- Permanent and temporary deployment
- Balance of Plant networked monitoring
- Standalone monitoring
- Integrated wide area plant asset monitoring
- Performance/efficiency management
- Condition based maintenance enabler

Curtiss-Wright Wireless Sensor Network Product


Composed of 3 major components

- Wireless Sensor Node (WSN)
- Wireless Receiver Node (WRN)
- Data Collection Computer (DCC)


Curtiss-Wright Wireless Sensor Network Overview

CURTISS -WRIGHT

How do we overcome these barriers?

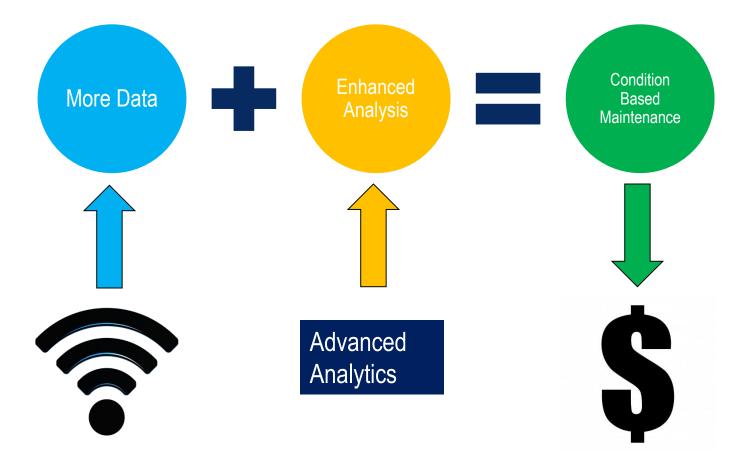
- Collect more data
 - Additional sensors
 - Continuous Monitoring
 - Additional Sensor types
- Utilize Advanced Analytics
 - APR
 - Thermal Performance
 - Fault Tree Analysis

Advanced Analytics

PdP – Advanced Pattern Recognition

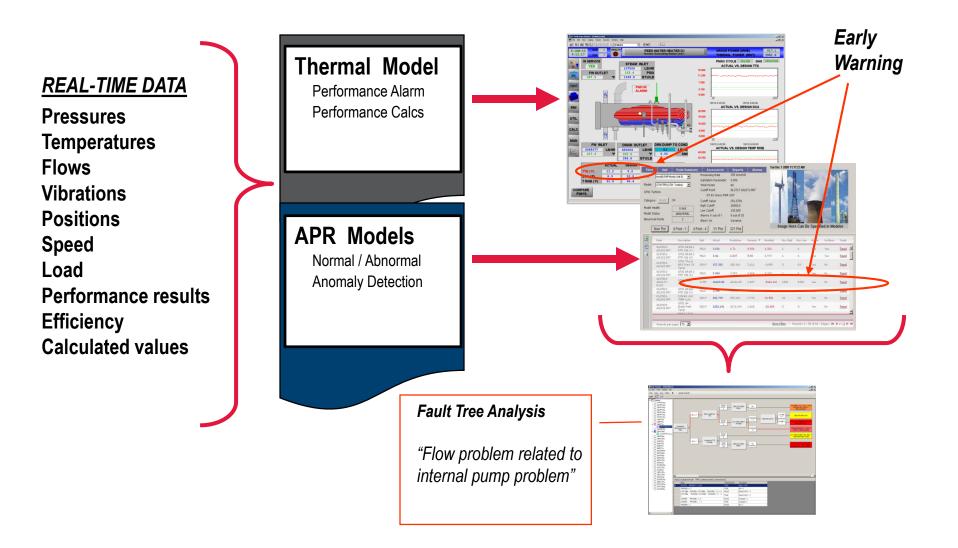
- Compares current state to learned or referenced states based upon related historical information
- Can determine very subtle condition changes

PMAX and PEPSE


- MW Accounting
- Best Achievable vs Nameplate
- Allows for lost MW costs to be constructed into system

Rules Engine

- Dynamic real time decision tree analysis processing


Condition Based Maintenance

14 | May 3, 2017 | © 2017 Curtiss-Wright , Proprietary and Confidential

Real-Time Data + Adv Analytics = Condition Based Maintenance

Conclusion

Wireless

- Removes the costs of running wires through out the site
- Allows for real time monitoring of systems that were previously intermittently monitored

Advanced Analytics

 Allows for real-time analysis and trending of plant components and systems

Condition Based Maintenance

 Combines additional real-time data provided by wireless with advanced analytics to provide a powerful tool for performing the right maintenance at the right time.

- **Tony Paletta**
- Director, Sales and Marketing
- **Curtiss-Wright**
- 304.670.5690
- tpaletta@curtisswright.com

Wireless Sensor Node

Node is built around three basic circuit boards

- Wireless Transceiver Board (same as WRN)
- Power / Battery Board (same as WRN)
- Sensor Conditioning Board
 - Thermocouple
 - RTD
 - Radiation
 - Voltage
 - (more in later product versions)
- One sensor per sensor node
 - Multi sensor nodes in future product versions

Sensor Types

Thermocouple

- Type K, J, N, R, S, T, E, and B
- Open Thermocouple Detection
- Low level voltage inputs (0-80 mV)
- Cold Junction Compensation
- External thermocouple
- Either raw voltage or temperature provided to the Data Collection Computer

RTD

- 100 Ohm or 1000 Ohm Platinum
- 2, 3 or 4-wire configuration
- External RTD
- Resistance provided to the Data Collection Computer (converted to temperature on DCC)

Sensor Types

Radiation

- Counts pulses from internal sensor
- Counts per time interval provided to the Data Collection Computer (converted to radiation rate on DCC)
- Voltage
 - -10VDC to +10VDC input range
 - Measure current loop inputs by converting current to voltage using an external resistor
 - Raw voltage provided to the Data Collection Computer (converted to EU value on DCC)

New Sensors

- As defined by customer requirements
 - Vibration
 - Stresswave
 - Others?

EMI / RFI Design Considerations (Susceptibility and Emissions)

- Operates in the 915 MHz band
 - Better penetration, lower power
- Frequency band supports 50 channels (USA)
 - Channels can be user assigned individually or in groups of channels
 - All WSNs and WRNs in a Wireless Sensor Subnet use the same channel assignments
- Configurable Transmit Power Level
 - 1 mW 100 mW
 - User configurable
 - As installed 10 mW or 20 mW (~50 to 100 m range)
 - Less than 12 inch exclusion zone at 20 mW

Sensor Inputs

- Process inputs suitable for low frequency periodic sampling
 - Input sensor sampling rate user configurable
 - Default is sample rate every 10 min
 - Default transmission rate is once per hour
 - Higher rates may require external power source
 - Scavenging or AC

Power / Battery Board

Power / Battery Board supports 3 battery configurations

- 2200 mAh (size of 1 AA battery)
 - Default for AC or energy harvesters
- 6600 mAh (size of 3 AA batteries)
 - Default for battery only sensor nodes
- Optional power modules
 - Thermal Energy Harvester
 - External 120 VAC transformer

Wireless Receiver Node

Node is built around three basic circuit boards

- Wireless Transceiver Board (same as WSN)
- Power / Battery Board (same as WSN)
- Communication Link Board
 - RJ-45 Ethernet
 - RS-485 Serial
- External 120 VAC transformer required for power

Wireless Sensor Subnet

Composed of

- One Wireless Receiver Node (functioning as receiver)
- Zero or more Wireless Receiver Nodes (functioning as multi-hop repeater nodes)
- 1 to 16 Wireless Sensor Nodes (additional nodes for future revision)
- Each Wireless Sensor Network installation can have an unlimited number Wireless Sensor Subnets
 - One Data Collection Computer services any number of Wireless Sensor Subnets

Data Collection Computer

Data Collection Computer is composed of

- Dell / HP / other laptop, desktop or server computer
- R*TIME Server and R*TIME Viewer software (standard R*TIME software)
- Wireless Sensor Network Interface software for R*TIME
- External interface software to OSI-PI, eDNA, etc. (optional)
- The Wireless Receiver Node for each Wireless Sensor Subnet interfaces to the Data Collection Computer
 - RS-485 serial
 - Converted to Ethernet via a separate serial hub device
 - RJ-45 Ethernet
 - Wireless Receiver Node interface is RJ-45 Ethernet, can be converted to fiber via additional transceivers or networking equipment

Cyber Security Design Considerations

- Devices not field configurable, only configurable in I&C shop
- Network ID and Preamble ID Configurable
 - User configurable for each Wireless Sensor Subnet
- All Communications Encrypted
 - User defined 256-bit AES encryption key
 - Symmetric encryption
 - Encrypts the entire transmission
- Initially only used for Cyber Security Layer 2 data (NEI 08-09 Cyber Security Model)
 - Meets requirements for Cyber Security Layer 3 data
- Sensor values used for maintenance decisions not operational decisions.

Low Power Design Considerations

- User defined scan rate
 - Default is 10 min
- User defined transmission rate
 - Default is 1 hour
- Microcontroller sleep mode when not executing
- Radio sleep mode when not transmitting
 - Sleep mode for Wireless Sensor Nodes only
 - Wireless Receiver Nodes (including repeater nodes) require external power because radio and microcontroller are constantly energized

Low Power Design Considerations

- Sensor chips scan only when enabled by the microcontroller at the scan rate
- Low data volume transmitted
- Power / Battery Board supports 2 battery configurations
 - 2200 mAh (size of 1 AA battery)
 - 6600 mAh (size of 3 AA batteries)
- > 2 year battery life for Wireless Sensor Nodes that do not have external power (at default scan and transmission rates)

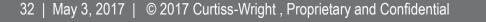
Reliability Design Considerations

- 16 Wireless Sensor Nodes per Wireless Sensor Subnet (additional nodes in future version)
 - Can separate different wireless subnets into different frequency channels
- Radio transmissions from the Wireless Sensor Node are acknowledged by the Wireless Receiver Node
 - Lack of acknowledgement causes transmission retry
 - Multiple retries are logged
- Acquired data is buffered on the Wireless Sensor Node
 - Able to withstand limited, periodic interference by buffering data
- In each time slot, the WSN tries transmission up to 3 times (retries twice per time slot)
- Communication timeouts are logged on the Data Collection Computer

• Will this product support safety-related applications?

 This product is being provided as COTS equipment and is not being developed or manufactured under either Augmented Quality or NQA-1.

Is the product seismically qualified?


 The base product is not being seismically qualified. However, seismic testing can be performed for a customer under a T&M basis.

Is the product EMI / RFI qualified?

 Even though the product has been designed to be EMI / RFI friendly, it has not been tested under EPRI TR-102323. However, EMI / RFI testing can be performed for a customer under a T&M basis.

Is installation and commissioning support provided with the base system?

- Installation and commissioning can be provided by Curtiss-Wright.
- Is the list of sensor provided in the presentation the only supported sensors?
 - Yes, for the first release of the product. Subsequent product versions may include additional sensor types based upon customer demand.
- Does the base system include networking equipment required to connect the Wireless Receiver Node to the Data Collection Computer?
 - The Wireless Receiver Node includes either an RJ-45 Ethernet connection or RS-485 connection to connect to the customers network. Any additional equipment required can be provided by Curtiss-Wright but is not included in the base system.
- Does the base system include design documentation?
 - Yes, the base system includes complete design documentation on the system including a Design and Installation Manual.

Does the base system include the Data Collection Computer?

 The Data Collection Computer is not included in the base system. A Data Collection Computer can be provided by Curtiss-Wright or a customer provided system utilized.

Does the base system include the Thermocouples and RTDs?

 The sensors are plant equipment, Thermocouples and RTDs are customer provided and installed.

Can the Wireless Sensor Network be installed and configured by the customer?

 Yes, Curtiss-Wright recommends either Curtiss-Wright provided system training or installation and configuration services for the first installation at a customer site.

Is source code provided for the system?

Source code of the R*TIME based Wireless Sensor Node Interface software is provided.
Source code for the Wireless Sensor Node and Wireless Receiver Node embedded software are not provided.

How many inputs does each sensor node support?

- The initial product version only supports one physical sensor per sensor node. Subsequent product versions may support multiple sensors for each sensor node for some sensor types.
- Can the product be used for Cyber Security Layer 3 (PPC) or Cyber Security Layer 4 (Control System) systems?
 - There is no technical reason the product cannot support these environments. However, because of the uncertainty surrounding the NRC acceptability of wireless solutions associated with plant operational systems, Curtiss-Wright is recommending the product for Cyber Security Layer 2 systems for the initial installations at a plant.

Tony Paletta Plant Monitoring & Control Director, Sales and Marketing 304.670.5690 tpaletta@curtisswright.com

www.cwnuclear.com

